由逆行模型生成的稳定动态模式

IF 0.8 Q4 ROBOTICS
Mari Nakamura
{"title":"由逆行模型生成的稳定动态模式","authors":"Mari Nakamura","doi":"10.1007/s10015-025-01017-1","DOIUrl":null,"url":null,"abstract":"<div><p>A heterogeneous boid is a multi-agent system comprised of several types of agents that communicate locally. It forms diverse patterns of agent groups through various interactions. With appropriately tuned interactions, it forms stable patterns of a unified cluster with symmetrical structures that reflect local interactions. This ensures that these patterns remain stable, regardless of the number of agents (i.e., scalability). Prior research introduced the retrograde model, where two agent types exhibited reverse movement while a third type formed a unified cluster. By tuning the interaction, this model formed stable dynamic patterns. With a large number of agents, even under appropriate interactions, long-lasting metastable states emerge, making it difficult to distinguish them from stable patterns. In this study, by focusing on large-scale structures (cluster shape and agent flow), we reclassified three stable dynamic patterns formed by the retrograde model, removing the metastable states. We identify a new dynamic stable pattern, named as an irregular-oscillating pattern, by focusing on a cluster of specific shapes.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 2","pages":"236 - 244"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable dynamic patterns generated by retrograde model\",\"authors\":\"Mari Nakamura\",\"doi\":\"10.1007/s10015-025-01017-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A heterogeneous boid is a multi-agent system comprised of several types of agents that communicate locally. It forms diverse patterns of agent groups through various interactions. With appropriately tuned interactions, it forms stable patterns of a unified cluster with symmetrical structures that reflect local interactions. This ensures that these patterns remain stable, regardless of the number of agents (i.e., scalability). Prior research introduced the retrograde model, where two agent types exhibited reverse movement while a third type formed a unified cluster. By tuning the interaction, this model formed stable dynamic patterns. With a large number of agents, even under appropriate interactions, long-lasting metastable states emerge, making it difficult to distinguish them from stable patterns. In this study, by focusing on large-scale structures (cluster shape and agent flow), we reclassified three stable dynamic patterns formed by the retrograde model, removing the metastable states. We identify a new dynamic stable pattern, named as an irregular-oscillating pattern, by focusing on a cluster of specific shapes.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"30 2\",\"pages\":\"236 - 244\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-025-01017-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-025-01017-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

异构boid是一个多代理系统,由几种类型的本地通信代理组成。通过各种交互作用,形成不同的agent群体模式。通过适当调整相互作用,它形成了一个具有对称结构的统一集群的稳定模式,反映了局部相互作用。这确保了这些模式保持稳定,而不考虑代理的数量(即可伸缩性)。先前的研究引入了逆行模型,其中两种智能体类型表现为反向移动,而第三种智能体类型形成统一的集群。通过调整交互,该模型形成了稳定的动态模式。对于大量的试剂,即使在适当的相互作用下,也会出现持久的亚稳态,这使得它们很难与稳定模式区分开来。在本研究中,我们通过关注大尺度结构(集群形状和agent流动),重新分类了由逆行模型形成的三种稳定的动态模式,去掉了亚稳态。我们确定了一种新的动态稳定模式,命名为不规则振荡模式,通过关注特定形状的集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable dynamic patterns generated by retrograde model

A heterogeneous boid is a multi-agent system comprised of several types of agents that communicate locally. It forms diverse patterns of agent groups through various interactions. With appropriately tuned interactions, it forms stable patterns of a unified cluster with symmetrical structures that reflect local interactions. This ensures that these patterns remain stable, regardless of the number of agents (i.e., scalability). Prior research introduced the retrograde model, where two agent types exhibited reverse movement while a third type formed a unified cluster. By tuning the interaction, this model formed stable dynamic patterns. With a large number of agents, even under appropriate interactions, long-lasting metastable states emerge, making it difficult to distinguish them from stable patterns. In this study, by focusing on large-scale structures (cluster shape and agent flow), we reclassified three stable dynamic patterns formed by the retrograde model, removing the metastable states. We identify a new dynamic stable pattern, named as an irregular-oscillating pattern, by focusing on a cluster of specific shapes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信