走向灵活的群体:具有不同复杂性的群集模型的比较

IF 0.8 Q4 ROBOTICS
Lauritz Keysberg, Naoki Wakamiya
{"title":"走向灵活的群体:具有不同复杂性的群集模型的比较","authors":"Lauritz Keysberg,&nbsp;Naoki Wakamiya","doi":"10.1007/s10015-025-01016-2","DOIUrl":null,"url":null,"abstract":"<div><p>One remarkable feat of biological swarms is their ability to work under very different environmental circumstances and disturbances. They exhibit a flexible kind of robustness, which accommodates external events without staying on rigid positions. Based on the observation that conventionally robust flocking models can be very complex and use information unavailable to biological swarm, we undertook a wide investigation into the properties of existing flocking models such as Boid, Couzin, Vicsek, and Cucker–Smale. That is, to see if a similar “natural” flexibility could be observed in flocking models with lower complexity. We established a toolset of three metrics which allows for a comprehensive evaluation of different flocking models. These metrics measure general model performance, robustness under noise, as well as a naive complexity of the model itself. Our results show a general trend for divergence between performance and robustness. The most robust models had a medium–high complexity. While our results show no clear relation between robustness and low complexity, we discuss examples for robust behavior with simple rules.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 2","pages":"219 - 226"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10015-025-01016-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards flexible swarms: comparison of flocking models with varying complexity\",\"authors\":\"Lauritz Keysberg,&nbsp;Naoki Wakamiya\",\"doi\":\"10.1007/s10015-025-01016-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One remarkable feat of biological swarms is their ability to work under very different environmental circumstances and disturbances. They exhibit a flexible kind of robustness, which accommodates external events without staying on rigid positions. Based on the observation that conventionally robust flocking models can be very complex and use information unavailable to biological swarm, we undertook a wide investigation into the properties of existing flocking models such as Boid, Couzin, Vicsek, and Cucker–Smale. That is, to see if a similar “natural” flexibility could be observed in flocking models with lower complexity. We established a toolset of three metrics which allows for a comprehensive evaluation of different flocking models. These metrics measure general model performance, robustness under noise, as well as a naive complexity of the model itself. Our results show a general trend for divergence between performance and robustness. The most robust models had a medium–high complexity. While our results show no clear relation between robustness and low complexity, we discuss examples for robust behavior with simple rules.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"30 2\",\"pages\":\"219 - 226\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10015-025-01016-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-025-01016-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-025-01016-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

生物群的一个显著的壮举是它们在非常不同的环境条件和干扰下工作的能力。它们表现出一种灵活的稳健性,可以适应外部事件而不停留在僵化的位置上。基于传统的稳健的群集模型可能非常复杂,并且使用生物群体无法获得的信息,我们对现有的群集模型(如Boid, Couzin, Vicsek和cucker - small)的性质进行了广泛的研究。也就是说,看看在具有较低复杂性的群集模型中是否可以观察到类似的“自然”灵活性。我们建立了一个包含三个指标的工具集,可以对不同的群集模型进行综合评估。这些指标衡量一般的模型性能,噪声下的鲁棒性,以及模型本身的朴素复杂性。我们的结果显示了性能和鲁棒性之间的总体分化趋势。最健壮的模型具有中等高度的复杂性。虽然我们的结果显示鲁棒性和低复杂性之间没有明确的关系,但我们讨论了使用简单规则的鲁棒行为的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards flexible swarms: comparison of flocking models with varying complexity

One remarkable feat of biological swarms is their ability to work under very different environmental circumstances and disturbances. They exhibit a flexible kind of robustness, which accommodates external events without staying on rigid positions. Based on the observation that conventionally robust flocking models can be very complex and use information unavailable to biological swarm, we undertook a wide investigation into the properties of existing flocking models such as Boid, Couzin, Vicsek, and Cucker–Smale. That is, to see if a similar “natural” flexibility could be observed in flocking models with lower complexity. We established a toolset of three metrics which allows for a comprehensive evaluation of different flocking models. These metrics measure general model performance, robustness under noise, as well as a naive complexity of the model itself. Our results show a general trend for divergence between performance and robustness. The most robust models had a medium–high complexity. While our results show no clear relation between robustness and low complexity, we discuss examples for robust behavior with simple rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信