Małgorzata M. O’Reilly, Sebastian Krasnicki, James Montgomery, Mojtaba Heydar, Richard Turner, Pieter Van Dam, Peter Maree
{"title":"一类病人分配调度问题的马尔可夫决策过程与近似动态规划","authors":"Małgorzata M. O’Reilly, Sebastian Krasnicki, James Montgomery, Mojtaba Heydar, Richard Turner, Pieter Van Dam, Peter Maree","doi":"10.1007/s10479-025-06553-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the patient assignment scheduling (PAS) problem in a random environment that arises in the management of patient flow in hospital systems, due to the stochastic nature of the arrivals as well as the length of stay (LoS) distribution. At the start of each time period, emergency patients in the waiting area of a hospital system need to be admitted to relevant wards. Decisions may involve allocation to less suitable wards, or transfers of the existing inpatients to accommodate higher priority cases when wards are at full capacity. However, the LoS for patients in non-primary wards may increase, potentially leading to long-term congestion. To assist with decision-making in this PAS problem, we construct a discrete-time Markov decision process over an infinite horizon, with multiple patient types and multiple wards. Since the instances of realistic size of this problem are not easy to solve, we develop numerical methods based on approximate dynamic programming. We demonstrate the application potential of our methodology under practical considerations with numerical examples, using parameters obtained from data at a tertiary referral hospital in Australia. We gain valuable insights, such as the number of patients in non-primary wards, the number of transferred patients, and the number of patients redirected to other facilities, under different policies that enhance the system’s performance. This approach allows for more realistic assumptions and can also help determine the appropriate size of wards for different patient types within the hospital system.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"347 3","pages":"1493 - 1531"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-025-06553-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Markov decision process and approximate dynamic programming for a patient assignment scheduling problem\",\"authors\":\"Małgorzata M. O’Reilly, Sebastian Krasnicki, James Montgomery, Mojtaba Heydar, Richard Turner, Pieter Van Dam, Peter Maree\",\"doi\":\"10.1007/s10479-025-06553-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the patient assignment scheduling (PAS) problem in a random environment that arises in the management of patient flow in hospital systems, due to the stochastic nature of the arrivals as well as the length of stay (LoS) distribution. At the start of each time period, emergency patients in the waiting area of a hospital system need to be admitted to relevant wards. Decisions may involve allocation to less suitable wards, or transfers of the existing inpatients to accommodate higher priority cases when wards are at full capacity. However, the LoS for patients in non-primary wards may increase, potentially leading to long-term congestion. To assist with decision-making in this PAS problem, we construct a discrete-time Markov decision process over an infinite horizon, with multiple patient types and multiple wards. Since the instances of realistic size of this problem are not easy to solve, we develop numerical methods based on approximate dynamic programming. We demonstrate the application potential of our methodology under practical considerations with numerical examples, using parameters obtained from data at a tertiary referral hospital in Australia. We gain valuable insights, such as the number of patients in non-primary wards, the number of transferred patients, and the number of patients redirected to other facilities, under different policies that enhance the system’s performance. This approach allows for more realistic assumptions and can also help determine the appropriate size of wards for different patient types within the hospital system.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"347 3\",\"pages\":\"1493 - 1531\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-025-06553-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-025-06553-4\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-025-06553-4","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Markov decision process and approximate dynamic programming for a patient assignment scheduling problem
We study the patient assignment scheduling (PAS) problem in a random environment that arises in the management of patient flow in hospital systems, due to the stochastic nature of the arrivals as well as the length of stay (LoS) distribution. At the start of each time period, emergency patients in the waiting area of a hospital system need to be admitted to relevant wards. Decisions may involve allocation to less suitable wards, or transfers of the existing inpatients to accommodate higher priority cases when wards are at full capacity. However, the LoS for patients in non-primary wards may increase, potentially leading to long-term congestion. To assist with decision-making in this PAS problem, we construct a discrete-time Markov decision process over an infinite horizon, with multiple patient types and multiple wards. Since the instances of realistic size of this problem are not easy to solve, we develop numerical methods based on approximate dynamic programming. We demonstrate the application potential of our methodology under practical considerations with numerical examples, using parameters obtained from data at a tertiary referral hospital in Australia. We gain valuable insights, such as the number of patients in non-primary wards, the number of transferred patients, and the number of patients redirected to other facilities, under different policies that enhance the system’s performance. This approach allows for more realistic assumptions and can also help determine the appropriate size of wards for different patient types within the hospital system.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.