基于混合机器学习的信用卡异常和欺诈检测多阶段框架

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hatoon S. Alsagri
{"title":"基于混合机器学习的信用卡异常和欺诈检测多阶段框架","authors":"Hatoon S. Alsagri","doi":"10.1109/ACCESS.2025.3565612","DOIUrl":null,"url":null,"abstract":"Recently, tremendous growth in e-business has arisen in an increasing number of online transactions. Such widespread adaptation of e-payments has been going along with the increase in deceitful activities, which results in tremendous losses in the financial sector. This led to a novel research paradigm using statistical and auto-data-driven techniques to detect anomalies and fraud. Thus, traditional techniques fail to provide a secure medium for online transactions. Consequently, building a credit card fraud (CCF) detector is essential for secure online operations. Therefore, based on the abovementioned constraints, this paper presents a comprehensive study incorporating heterogeneous machine learning (ML) techniques for CCF detection. The proposed framework utilizes a multi-stage classification system that employs multiple classifiers, i.e., logistic regression, support vector machine (SVM) XGBoost, Random Forest, K-Nearest Neighbors (KNN), and Deep Neural Network (DNN). Furthermore, to accomplish the intensive class imbalance, the proposed technique uses a sampling technique with an internal features selection technique implemented based on voting among different methods. The key finding indicates that the proposed model surpasses the existing DNN simple voting, traditional stacking framework with a fraud recall value of 0.901, a legitimate recall value of 0.995, and a model cost value of 0.421.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"77039-77048"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980010","citationCount":"0","resultStr":"{\"title\":\"Hybrid Machine Learning-Based Multi-Stage Framework for Detection of Credit Card Anomalies and Fraud\",\"authors\":\"Hatoon S. Alsagri\",\"doi\":\"10.1109/ACCESS.2025.3565612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, tremendous growth in e-business has arisen in an increasing number of online transactions. Such widespread adaptation of e-payments has been going along with the increase in deceitful activities, which results in tremendous losses in the financial sector. This led to a novel research paradigm using statistical and auto-data-driven techniques to detect anomalies and fraud. Thus, traditional techniques fail to provide a secure medium for online transactions. Consequently, building a credit card fraud (CCF) detector is essential for secure online operations. Therefore, based on the abovementioned constraints, this paper presents a comprehensive study incorporating heterogeneous machine learning (ML) techniques for CCF detection. The proposed framework utilizes a multi-stage classification system that employs multiple classifiers, i.e., logistic regression, support vector machine (SVM) XGBoost, Random Forest, K-Nearest Neighbors (KNN), and Deep Neural Network (DNN). Furthermore, to accomplish the intensive class imbalance, the proposed technique uses a sampling technique with an internal features selection technique implemented based on voting among different methods. The key finding indicates that the proposed model surpasses the existing DNN simple voting, traditional stacking framework with a fraud recall value of 0.901, a legitimate recall value of 0.995, and a model cost value of 0.421.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"77039-77048\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980010/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980010/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着网上交易的增多,电子商务迅猛发展。电子支付的广泛应用伴随着欺诈活动的增加,这给金融部门造成了巨大的损失。这导致了一种新的研究范式,使用统计和自动数据驱动技术来检测异常和欺诈。因此,传统技术无法为在线交易提供安全的媒介。因此,建立信用卡欺诈(CCF)检测器对于安全的在线操作至关重要。因此,基于上述约束,本文提出了一项综合研究,将异构机器学习(ML)技术用于CCF检测。该框架采用多阶段分类系统,采用多个分类器,即逻辑回归、支持向量机(SVM) XGBoost、随机森林、k近邻(KNN)和深度神经网络(DNN)。此外,为了实现密集的类不平衡,该技术使用了基于不同方法之间投票实现的内部特征选择技术的抽样技术。关键发现表明,该模型超越了现有的DNN简单投票、传统堆叠框架,欺诈召回值为0.901,合法召回值为0.995,模型成本值为0.421。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Machine Learning-Based Multi-Stage Framework for Detection of Credit Card Anomalies and Fraud
Recently, tremendous growth in e-business has arisen in an increasing number of online transactions. Such widespread adaptation of e-payments has been going along with the increase in deceitful activities, which results in tremendous losses in the financial sector. This led to a novel research paradigm using statistical and auto-data-driven techniques to detect anomalies and fraud. Thus, traditional techniques fail to provide a secure medium for online transactions. Consequently, building a credit card fraud (CCF) detector is essential for secure online operations. Therefore, based on the abovementioned constraints, this paper presents a comprehensive study incorporating heterogeneous machine learning (ML) techniques for CCF detection. The proposed framework utilizes a multi-stage classification system that employs multiple classifiers, i.e., logistic regression, support vector machine (SVM) XGBoost, Random Forest, K-Nearest Neighbors (KNN), and Deep Neural Network (DNN). Furthermore, to accomplish the intensive class imbalance, the proposed technique uses a sampling technique with an internal features selection technique implemented based on voting among different methods. The key finding indicates that the proposed model surpasses the existing DNN simple voting, traditional stacking framework with a fraud recall value of 0.901, a legitimate recall value of 0.995, and a model cost value of 0.421.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信