Hang Zou;Qiyang Zhao;Samson Lasaulce;Lina Bariah;Mehdi Bennis;Mérouane Debbah
{"title":"GenAINet:通过知识转移和推理实现无线集体智能","authors":"Hang Zou;Qiyang Zhao;Samson Lasaulce;Lina Bariah;Mehdi Bennis;Mérouane Debbah","doi":"10.1109/ACCESS.2025.3565859","DOIUrl":null,"url":null,"abstract":"genai and communication networks are expected to have groundbreaking synergies for 6G. Connecting Generative Artificial Intelligence (GenAI) agents via a wireless network can potentially unleash the power of Collective Intelligence (CI) and pave the way for Artificial General Intelligence (AGI). However, current wireless networks are designed as a “data pipe” and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (facts, experiences, and methods) to accomplish arbitrary tasks. We first propose an architecture for a single GenAI agent and then provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantics from heterogeneous raw data, build and maintain a knowledge model representing the semantic relationships among pieces of knowledge, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, different levels of collaboration can be achieved flexibly depending on the complexity of targeted tasks. Furthermore, we conduct two case studies in which, through wireless device queries, we demonstrate that extracting, compressing and transferring common knowledge can improve query accuracy while reducing communication costs; and in the wireless power control problem, we show that distributed agents can complete general tasks independently through collaborative reasoning without predefined communication protocols. Finally, we discuss challenges and future research directions in applying Large Language Models (LLMs) in 6G networks.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"77764-77777"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980288","citationCount":"0","resultStr":"{\"title\":\"GenAINet: Enabling Wireless Collective Intelligence via Knowledge Transfer and Reasoning\",\"authors\":\"Hang Zou;Qiyang Zhao;Samson Lasaulce;Lina Bariah;Mehdi Bennis;Mérouane Debbah\",\"doi\":\"10.1109/ACCESS.2025.3565859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"genai and communication networks are expected to have groundbreaking synergies for 6G. Connecting Generative Artificial Intelligence (GenAI) agents via a wireless network can potentially unleash the power of Collective Intelligence (CI) and pave the way for Artificial General Intelligence (AGI). However, current wireless networks are designed as a “data pipe” and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (facts, experiences, and methods) to accomplish arbitrary tasks. We first propose an architecture for a single GenAI agent and then provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantics from heterogeneous raw data, build and maintain a knowledge model representing the semantic relationships among pieces of knowledge, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, different levels of collaboration can be achieved flexibly depending on the complexity of targeted tasks. Furthermore, we conduct two case studies in which, through wireless device queries, we demonstrate that extracting, compressing and transferring common knowledge can improve query accuracy while reducing communication costs; and in the wireless power control problem, we show that distributed agents can complete general tasks independently through collaborative reasoning without predefined communication protocols. Finally, we discuss challenges and future research directions in applying Large Language Models (LLMs) in 6G networks.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"77764-77777\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980288\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980288/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980288/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GenAINet: Enabling Wireless Collective Intelligence via Knowledge Transfer and Reasoning
genai and communication networks are expected to have groundbreaking synergies for 6G. Connecting Generative Artificial Intelligence (GenAI) agents via a wireless network can potentially unleash the power of Collective Intelligence (CI) and pave the way for Artificial General Intelligence (AGI). However, current wireless networks are designed as a “data pipe” and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (facts, experiences, and methods) to accomplish arbitrary tasks. We first propose an architecture for a single GenAI agent and then provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantics from heterogeneous raw data, build and maintain a knowledge model representing the semantic relationships among pieces of knowledge, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, different levels of collaboration can be achieved flexibly depending on the complexity of targeted tasks. Furthermore, we conduct two case studies in which, through wireless device queries, we demonstrate that extracting, compressing and transferring common knowledge can improve query accuracy while reducing communication costs; and in the wireless power control problem, we show that distributed agents can complete general tasks independently through collaborative reasoning without predefined communication protocols. Finally, we discuss challenges and future research directions in applying Large Language Models (LLMs) in 6G networks.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.