Junmeng Zhu , Yi Sun , Xiaoping Qian , Lin Li , Fangcen Liu , Xiaonan Wang , Yaohua Ke , Jie Shao , Lijing Zhu , Lifeng Wang , Qin Liu , Baorui Liu
{"title":"结内注射携带新抗原的工程乳酸乳球菌可引发表位扩散和全身肿瘤消退","authors":"Junmeng Zhu , Yi Sun , Xiaoping Qian , Lin Li , Fangcen Liu , Xiaonan Wang , Yaohua Ke , Jie Shao , Lijing Zhu , Lifeng Wang , Qin Liu , Baorui Liu","doi":"10.1016/j.apsb.2025.02.041","DOIUrl":null,"url":null,"abstract":"<div><div>Probiotics are natural systems bridging synthetic biology, physical biotechnology, and immunology, initiating innate and adaptive anti-tumor immune activity. We previously constructed an all-in-one engineered food-grade probiotic <em>Lactococcus lactis</em> (FOLactis) which could boost the crosstalk among different immune cells such as dendritic cells (DCs), natural killer cells, and T cells. Herein, considering the limited clinical efficacy of naked personalized neoantigen peptide vaccines, we decorate FOLactis with tumor antigens by employing a Plug-and-Display system comprising membrane-inserted peptides. Intranodal injection of FOLactis coated with neoantigen peptides (Ag-FOLactis) induces robust DCs presentation and neoantigen-specific cellular immunity. Notably, Ag-FOLactis not only triggers a 45-fold rise in the quantity of locally reactive neoantigen-specific T cells but also induces epitope spreading in both subcutaneous and metastatic tumor-bearing models, leading to potent inhibition of tumor growth. These findings imply that Ag-FOLactis represents a powerful platform to rapidly and easily display antigens, facilitating the development of a bio-activated platform for personalized therapy.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 4","pages":"Pages 2217-2236"},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intranodal injection of neoantigen-bearing engineered Lactococcus lactis triggers epitope spreading and systemic tumor regressions\",\"authors\":\"Junmeng Zhu , Yi Sun , Xiaoping Qian , Lin Li , Fangcen Liu , Xiaonan Wang , Yaohua Ke , Jie Shao , Lijing Zhu , Lifeng Wang , Qin Liu , Baorui Liu\",\"doi\":\"10.1016/j.apsb.2025.02.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Probiotics are natural systems bridging synthetic biology, physical biotechnology, and immunology, initiating innate and adaptive anti-tumor immune activity. We previously constructed an all-in-one engineered food-grade probiotic <em>Lactococcus lactis</em> (FOLactis) which could boost the crosstalk among different immune cells such as dendritic cells (DCs), natural killer cells, and T cells. Herein, considering the limited clinical efficacy of naked personalized neoantigen peptide vaccines, we decorate FOLactis with tumor antigens by employing a Plug-and-Display system comprising membrane-inserted peptides. Intranodal injection of FOLactis coated with neoantigen peptides (Ag-FOLactis) induces robust DCs presentation and neoantigen-specific cellular immunity. Notably, Ag-FOLactis not only triggers a 45-fold rise in the quantity of locally reactive neoantigen-specific T cells but also induces epitope spreading in both subcutaneous and metastatic tumor-bearing models, leading to potent inhibition of tumor growth. These findings imply that Ag-FOLactis represents a powerful platform to rapidly and easily display antigens, facilitating the development of a bio-activated platform for personalized therapy.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"15 4\",\"pages\":\"Pages 2217-2236\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383525001352\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525001352","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intranodal injection of neoantigen-bearing engineered Lactococcus lactis triggers epitope spreading and systemic tumor regressions
Probiotics are natural systems bridging synthetic biology, physical biotechnology, and immunology, initiating innate and adaptive anti-tumor immune activity. We previously constructed an all-in-one engineered food-grade probiotic Lactococcus lactis (FOLactis) which could boost the crosstalk among different immune cells such as dendritic cells (DCs), natural killer cells, and T cells. Herein, considering the limited clinical efficacy of naked personalized neoantigen peptide vaccines, we decorate FOLactis with tumor antigens by employing a Plug-and-Display system comprising membrane-inserted peptides. Intranodal injection of FOLactis coated with neoantigen peptides (Ag-FOLactis) induces robust DCs presentation and neoantigen-specific cellular immunity. Notably, Ag-FOLactis not only triggers a 45-fold rise in the quantity of locally reactive neoantigen-specific T cells but also induces epitope spreading in both subcutaneous and metastatic tumor-bearing models, leading to potent inhibition of tumor growth. These findings imply that Ag-FOLactis represents a powerful platform to rapidly and easily display antigens, facilitating the development of a bio-activated platform for personalized therapy.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.