Yuxin Fang , Yaojin Zhu , Wei Wang , Zhewei Xia , Shipeng He , Guoqiang Dong , Chunquan Sheng
{"title":"靶向降解膜蛋白的gpc3介导溶酶体靶向嵌合体(GLTACs)","authors":"Yuxin Fang , Yaojin Zhu , Wei Wang , Zhewei Xia , Shipeng He , Guoqiang Dong , Chunquan Sheng","doi":"10.1016/j.apsb.2025.02.037","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane protein degradation is a cutting-edge field in targeted protein degradation (TPD). Herein, we developed glypican-3 (GPC3)-mediated lysosome-targeting chimeras (GLTACs) as a novel strategy for the targeted degradation of tumor-specific membrane proteins. GLTACs utilize tumor-specific expression and endocytosis properties of GPC3 to degrade membrane proteins. By conjugating a GPC3-targeting peptide with the ligand of protein of interest (POI), GLTACs induce the formation of a ternary complex that is internalized into lysosomes, leading to the degradation of the POI. The effectiveness and specificity of GLTACs were validated by designing PD-L1, c-Met, and FGFR1 degraders. In particular, GLTAC <strong>WP0</strong> potently degraded PD-L1 and induced T-cell-mediated tumor killing against HepG2 cells, highlighting the potential therapeutic applications. The development of GLTAC technology expands the scope of TPD strategies and opens new avenues for discovering novel therapeutic modalities against challenging protein targets.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 4","pages":"Pages 2156-2169"},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPC3-mediated lysosome-targeting chimeras (GLTACs) for targeted degradation of membrane proteins\",\"authors\":\"Yuxin Fang , Yaojin Zhu , Wei Wang , Zhewei Xia , Shipeng He , Guoqiang Dong , Chunquan Sheng\",\"doi\":\"10.1016/j.apsb.2025.02.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Membrane protein degradation is a cutting-edge field in targeted protein degradation (TPD). Herein, we developed glypican-3 (GPC3)-mediated lysosome-targeting chimeras (GLTACs) as a novel strategy for the targeted degradation of tumor-specific membrane proteins. GLTACs utilize tumor-specific expression and endocytosis properties of GPC3 to degrade membrane proteins. By conjugating a GPC3-targeting peptide with the ligand of protein of interest (POI), GLTACs induce the formation of a ternary complex that is internalized into lysosomes, leading to the degradation of the POI. The effectiveness and specificity of GLTACs were validated by designing PD-L1, c-Met, and FGFR1 degraders. In particular, GLTAC <strong>WP0</strong> potently degraded PD-L1 and induced T-cell-mediated tumor killing against HepG2 cells, highlighting the potential therapeutic applications. The development of GLTAC technology expands the scope of TPD strategies and opens new avenues for discovering novel therapeutic modalities against challenging protein targets.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"15 4\",\"pages\":\"Pages 2156-2169\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383525001339\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525001339","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
GPC3-mediated lysosome-targeting chimeras (GLTACs) for targeted degradation of membrane proteins
Membrane protein degradation is a cutting-edge field in targeted protein degradation (TPD). Herein, we developed glypican-3 (GPC3)-mediated lysosome-targeting chimeras (GLTACs) as a novel strategy for the targeted degradation of tumor-specific membrane proteins. GLTACs utilize tumor-specific expression and endocytosis properties of GPC3 to degrade membrane proteins. By conjugating a GPC3-targeting peptide with the ligand of protein of interest (POI), GLTACs induce the formation of a ternary complex that is internalized into lysosomes, leading to the degradation of the POI. The effectiveness and specificity of GLTACs were validated by designing PD-L1, c-Met, and FGFR1 degraders. In particular, GLTAC WP0 potently degraded PD-L1 and induced T-cell-mediated tumor killing against HepG2 cells, highlighting the potential therapeutic applications. The development of GLTAC technology expands the scope of TPD strategies and opens new avenues for discovering novel therapeutic modalities against challenging protein targets.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.