单相/两相蒸腾冷却对爆轰起爆和传播的影响

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Jianing Kang, Yuguang Jiang, Qi Wang, Jin Zhang, Yong Lin, Wei Fan
{"title":"单相/两相蒸腾冷却对爆轰起爆和传播的影响","authors":"Jianing Kang,&nbsp;Yuguang Jiang,&nbsp;Qi Wang,&nbsp;Jin Zhang,&nbsp;Yong Lin,&nbsp;Wei Fan","doi":"10.1016/j.expthermflusci.2025.111513","DOIUrl":null,"url":null,"abstract":"<div><div>Pulse Detonation Engine (PDE) requires highly efficient cooling technology, especially under high frequency and high Mach number. Transpiration cooling is a promising cooling method considering its high cooling capacity. In this work, the influences of single/two phase transpiration cooling on the Deflagration to Detonation Transition process (DDT) and the propagation of detonation wave are investigated experimentally. Regarding single phase transpiration cooling, the supply pressure and cooling Cooling phase of the cooling gas affect the local equivalence ratio, which affects the flame structure and velocity. When <em>P</em><sub>c</sub> (Supply pressure) = 0.4–1.0 MPa, the effect of supply pressure on flame velocity is not significant (The DDT section, <em>C</em><sub>s</sub>(Cooling phase) ≤ -10°; The detonation propagation section, <em>C</em><sub>s</sub> ≤ -5°). The two-phase transpiration cooling coolant changes the blocking ratio and affects the flame acceleration. The two-phase transpiration cooling has less interference on detonation propagation section. Local divergent flow passage is formed where the transpiration layer ends. The detonation propagation velocity reduces, but the minimum of which is still higher than 90 % CJ velocity. No decoupling or failure of detonation wave occurs.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"168 ","pages":"Article 111513"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of single-phase/two-phase transpiration cooling on detonation initiation and propagation\",\"authors\":\"Jianing Kang,&nbsp;Yuguang Jiang,&nbsp;Qi Wang,&nbsp;Jin Zhang,&nbsp;Yong Lin,&nbsp;Wei Fan\",\"doi\":\"10.1016/j.expthermflusci.2025.111513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pulse Detonation Engine (PDE) requires highly efficient cooling technology, especially under high frequency and high Mach number. Transpiration cooling is a promising cooling method considering its high cooling capacity. In this work, the influences of single/two phase transpiration cooling on the Deflagration to Detonation Transition process (DDT) and the propagation of detonation wave are investigated experimentally. Regarding single phase transpiration cooling, the supply pressure and cooling Cooling phase of the cooling gas affect the local equivalence ratio, which affects the flame structure and velocity. When <em>P</em><sub>c</sub> (Supply pressure) = 0.4–1.0 MPa, the effect of supply pressure on flame velocity is not significant (The DDT section, <em>C</em><sub>s</sub>(Cooling phase) ≤ -10°; The detonation propagation section, <em>C</em><sub>s</sub> ≤ -5°). The two-phase transpiration cooling coolant changes the blocking ratio and affects the flame acceleration. The two-phase transpiration cooling has less interference on detonation propagation section. Local divergent flow passage is formed where the transpiration layer ends. The detonation propagation velocity reduces, but the minimum of which is still higher than 90 % CJ velocity. No decoupling or failure of detonation wave occurs.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"168 \",\"pages\":\"Article 111513\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725001074\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725001074","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

脉冲爆震发动机(PDE)需要高效的冷却技术,特别是在高频和高马赫数条件下。蒸腾冷却具有较高的制冷量,是一种很有前途的冷却方式。本文通过实验研究了单/两相蒸腾冷却对爆燃-爆轰过渡过程和爆震波传播的影响。对于单相蒸腾冷却,冷却气体的供气压力和冷却相影响局部等效比,从而影响火焰结构和速度。当Pc(供气压力)= 0.4 ~ 1.0 MPa时,供气压力对火焰速度的影响不显著(DDT截面,Cs(冷却相)≤-10°;爆轰传播截面,Cs≤-5°)。两相蒸腾冷却液改变了堵塞比,影响火焰加速。两相蒸腾冷却对爆轰传播段的干扰较小。在蒸腾层结束处形成局部发散气流通道。爆轰传播速度减小,但最小值仍高于90% CJ速度。爆震波不发生解耦或失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influences of single-phase/two-phase transpiration cooling on detonation initiation and propagation
Pulse Detonation Engine (PDE) requires highly efficient cooling technology, especially under high frequency and high Mach number. Transpiration cooling is a promising cooling method considering its high cooling capacity. In this work, the influences of single/two phase transpiration cooling on the Deflagration to Detonation Transition process (DDT) and the propagation of detonation wave are investigated experimentally. Regarding single phase transpiration cooling, the supply pressure and cooling Cooling phase of the cooling gas affect the local equivalence ratio, which affects the flame structure and velocity. When Pc (Supply pressure) = 0.4–1.0 MPa, the effect of supply pressure on flame velocity is not significant (The DDT section, Cs(Cooling phase) ≤ -10°; The detonation propagation section, Cs ≤ -5°). The two-phase transpiration cooling coolant changes the blocking ratio and affects the flame acceleration. The two-phase transpiration cooling has less interference on detonation propagation section. Local divergent flow passage is formed where the transpiration layer ends. The detonation propagation velocity reduces, but the minimum of which is still higher than 90 % CJ velocity. No decoupling or failure of detonation wave occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信