光束弯曲与液体晃动动态相互作用的控制

IF 4.3 2区 工程技术 Q1 ACOUSTICS
Jiawei Han, Jie Huang
{"title":"光束弯曲与液体晃动动态相互作用的控制","authors":"Jiawei Han,&nbsp;Jie Huang","doi":"10.1016/j.jsv.2025.119172","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between the beam bending and liquid sloshing occurs in many industrial applications including liquid transport, space exploration, and aircraft wing. Little attention has been directed at the theoretical investigation and experimental validation of coupling effects between the nonlinear bending of the flexible beam and nonlinear sloshing of the fluid liquid. A new dynamic model of a flexible beam supporting a liquid container has been developed. The model captures the dynamic interaction between the nonlinear bending and sloshing. Additionally, an analytical equation was obtained from the model in order to estimate the coupled frequency of the bending-sloshing interaction. The coupled frequency significantly differs from the frequency of the beam bending and fluid sloshing. Furthermore, a new method was presented to control the coupled oscillations caused by the nonlinear bending-sloshing interaction. Experimental investigations were performed on a cantilever beam transporting a liquid container to validate the effectiveness of the dynamic model, frequency estimation, and vibration-control method.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"612 ","pages":"Article 119172"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of dynamic interaction between the beam bending and liquid sloshing\",\"authors\":\"Jiawei Han,&nbsp;Jie Huang\",\"doi\":\"10.1016/j.jsv.2025.119172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interaction between the beam bending and liquid sloshing occurs in many industrial applications including liquid transport, space exploration, and aircraft wing. Little attention has been directed at the theoretical investigation and experimental validation of coupling effects between the nonlinear bending of the flexible beam and nonlinear sloshing of the fluid liquid. A new dynamic model of a flexible beam supporting a liquid container has been developed. The model captures the dynamic interaction between the nonlinear bending and sloshing. Additionally, an analytical equation was obtained from the model in order to estimate the coupled frequency of the bending-sloshing interaction. The coupled frequency significantly differs from the frequency of the beam bending and fluid sloshing. Furthermore, a new method was presented to control the coupled oscillations caused by the nonlinear bending-sloshing interaction. Experimental investigations were performed on a cantilever beam transporting a liquid container to validate the effectiveness of the dynamic model, frequency estimation, and vibration-control method.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"612 \",\"pages\":\"Article 119172\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25002469\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25002469","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

光束弯曲和液体晃动之间的相互作用发生在许多工业应用中,包括液体运输,空间探索和飞机机翼。柔性梁的非线性弯曲与流体的非线性晃动之间耦合效应的理论研究和实验验证很少受到重视。建立了一种新的支撑液体容器的柔性梁动力学模型。该模型捕捉了非线性弯曲和晃动之间的动态相互作用。此外,利用该模型推导出了弯曲晃动耦合频率的解析方程。耦合频率与光束弯曲和流体晃动的频率显著不同。在此基础上,提出了一种控制非线性弯曲晃动耦合振荡的新方法。通过对悬臂梁输送液体容器的实验研究,验证了动态模型、频率估计和振动控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of dynamic interaction between the beam bending and liquid sloshing
The interaction between the beam bending and liquid sloshing occurs in many industrial applications including liquid transport, space exploration, and aircraft wing. Little attention has been directed at the theoretical investigation and experimental validation of coupling effects between the nonlinear bending of the flexible beam and nonlinear sloshing of the fluid liquid. A new dynamic model of a flexible beam supporting a liquid container has been developed. The model captures the dynamic interaction between the nonlinear bending and sloshing. Additionally, an analytical equation was obtained from the model in order to estimate the coupled frequency of the bending-sloshing interaction. The coupled frequency significantly differs from the frequency of the beam bending and fluid sloshing. Furthermore, a new method was presented to control the coupled oscillations caused by the nonlinear bending-sloshing interaction. Experimental investigations were performed on a cantilever beam transporting a liquid container to validate the effectiveness of the dynamic model, frequency estimation, and vibration-control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信