基于指标可逆性的动态离散选择模型的快速估计

IF 9.9 3区 经济学 Q1 ECONOMICS
Jackson Bunting , Takuya Ura
{"title":"基于指标可逆性的动态离散选择模型的快速估计","authors":"Jackson Bunting ,&nbsp;Takuya Ura","doi":"10.1016/j.jeconom.2025.106004","DOIUrl":null,"url":null,"abstract":"<div><div>Many estimators of dynamic discrete choice models with persistent unobserved heterogeneity have desirable statistical properties but are computationally intensive. In this paper we propose a method to quicken estimation for a broad class of dynamic discrete choice problems by exploiting semiparametric index restrictions. Specifically, we propose an estimator for models whose reduced form parameters are invertible functions of one or more linear indices (Ahn et al., 2018) , a property we term index invertibility. We establish that index invertibility implies a set of equality constraints on the model parameters. Our proposed estimator uses the equality constraints to decrease the dimension of the optimization problem, thereby generating computational gains. Our main result shows that the proposed estimator is asymptotically equivalent to the unconstrained, computationally heavy estimator. In addition, we provide a series of results on the number of independent index restrictions on the model parameters, providing theoretical guidance on the extent of computational gains. Finally, we demonstrate the advantages of our approach via Monte Carlo simulations.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"250 ","pages":"Article 106004"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster estimation of dynamic discrete choice models using index invertibility\",\"authors\":\"Jackson Bunting ,&nbsp;Takuya Ura\",\"doi\":\"10.1016/j.jeconom.2025.106004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many estimators of dynamic discrete choice models with persistent unobserved heterogeneity have desirable statistical properties but are computationally intensive. In this paper we propose a method to quicken estimation for a broad class of dynamic discrete choice problems by exploiting semiparametric index restrictions. Specifically, we propose an estimator for models whose reduced form parameters are invertible functions of one or more linear indices (Ahn et al., 2018) , a property we term index invertibility. We establish that index invertibility implies a set of equality constraints on the model parameters. Our proposed estimator uses the equality constraints to decrease the dimension of the optimization problem, thereby generating computational gains. Our main result shows that the proposed estimator is asymptotically equivalent to the unconstrained, computationally heavy estimator. In addition, we provide a series of results on the number of independent index restrictions on the model parameters, providing theoretical guidance on the extent of computational gains. Finally, we demonstrate the advantages of our approach via Monte Carlo simulations.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"250 \",\"pages\":\"Article 106004\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625000582\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000582","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

许多具有持续不可观测异质性的动态离散选择模型的估计器具有理想的统计特性,但计算量很大。本文提出了一种利用半参数指标限制对一类动态离散选择问题进行快速估计的方法。具体来说,我们提出了一个模型的估计器,其简化形式参数是一个或多个线性指标的可逆函数(Ahn et al., 2018),我们称之为指标可逆性。我们建立了指标可逆性意味着模型参数的一组等式约束。我们提出的估计器使用等式约束来减少优化问题的维数,从而产生计算增益。我们的主要结果表明,所提出的估计量是渐近等价于无约束的,计算量大的估计量。此外,我们还提供了一系列关于模型参数的独立指标限制数量的结果,为计算增益的程度提供了理论指导。最后,我们通过蒙特卡罗模拟证明了我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster estimation of dynamic discrete choice models using index invertibility
Many estimators of dynamic discrete choice models with persistent unobserved heterogeneity have desirable statistical properties but are computationally intensive. In this paper we propose a method to quicken estimation for a broad class of dynamic discrete choice problems by exploiting semiparametric index restrictions. Specifically, we propose an estimator for models whose reduced form parameters are invertible functions of one or more linear indices (Ahn et al., 2018) , a property we term index invertibility. We establish that index invertibility implies a set of equality constraints on the model parameters. Our proposed estimator uses the equality constraints to decrease the dimension of the optimization problem, thereby generating computational gains. Our main result shows that the proposed estimator is asymptotically equivalent to the unconstrained, computationally heavy estimator. In addition, we provide a series of results on the number of independent index restrictions on the model parameters, providing theoretical guidance on the extent of computational gains. Finally, we demonstrate the advantages of our approach via Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信