关于Rosenthal族与大尺度拓扑的基数不变量

IF 0.6 2区 数学 Q2 LOGIC
Arturo Martínez-Celis, Tomasz Żuchowski
{"title":"关于Rosenthal族与大尺度拓扑的基数不变量","authors":"Arturo Martínez-Celis,&nbsp;Tomasz Żuchowski","doi":"10.1016/j.apal.2025.103607","DOIUrl":null,"url":null,"abstract":"<div><div>Given a function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, a set <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is <em>free for f</em> if <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>∩</mo><mi>A</mi></math></span> is finite. For a class of functions <span><math><mi>Γ</mi><mo>⊆</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, we define <span><math><msub><mrow><mi>ros</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> such that for every <span><math><mi>f</mi><mo>∈</mo><mi>Γ</mi></math></span> there is a set <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> which is free for <em>f</em>, and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>F</mi><mo>⊆</mo><mi>Γ</mi></math></span> such that for every <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> there is <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> such that <em>A</em> is not free for <em>f</em>. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from <span><span>[20]</span></span> and <span><span>[2]</span></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103607"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cardinal invariants related to Rosenthal families and large-scale topology\",\"authors\":\"Arturo Martínez-Celis,&nbsp;Tomasz Żuchowski\",\"doi\":\"10.1016/j.apal.2025.103607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, a set <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is <em>free for f</em> if <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>∩</mo><mi>A</mi></math></span> is finite. For a class of functions <span><math><mi>Γ</mi><mo>⊆</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, we define <span><math><msub><mrow><mi>ros</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> such that for every <span><math><mi>f</mi><mo>∈</mo><mi>Γ</mi></math></span> there is a set <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> which is free for <em>f</em>, and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>F</mi><mo>⊆</mo><mi>Γ</mi></math></span> such that for every <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> there is <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> such that <em>A</em> is not free for <em>f</em>. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from <span><span>[20]</span></span> and <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 8\",\"pages\":\"Article 103607\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000569\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

给定一个函数f∈ω,如果f[a]∩a是有限的,则集合a∈[ω]ω对于f是自由的。对于一类函数Γ≥ω,我们将rosΓ定义为族a的最小规模,使得对于每一个f∈Γ,存在一个对f自由的集合a∈a;将ΔΓ定义为族f的最小规模,使得对于每一个a∈[ω]ω,存在f∈f,使得a对f不自由。我们将这些基本不变量的几种版本与连续体的一些经典基本特征进行比较。利用这些概念,我们部分地回答了[20]和[2]中的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On cardinal invariants related to Rosenthal families and large-scale topology
Given a function fωω, a set A[ω]ω is free for f if f[A]A is finite. For a class of functions Γωω, we define rosΓ as the smallest size of a family A[ω]ω such that for every fΓ there is a set AA which is free for f, and ΔΓ as the smallest size of a family FΓ such that for every A[ω]ω there is fF such that A is not free for f. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from [20] and [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信