{"title":"关于Rosenthal族与大尺度拓扑的基数不变量","authors":"Arturo Martínez-Celis, Tomasz Żuchowski","doi":"10.1016/j.apal.2025.103607","DOIUrl":null,"url":null,"abstract":"<div><div>Given a function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, a set <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is <em>free for f</em> if <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>∩</mo><mi>A</mi></math></span> is finite. For a class of functions <span><math><mi>Γ</mi><mo>⊆</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, we define <span><math><msub><mrow><mi>ros</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> such that for every <span><math><mi>f</mi><mo>∈</mo><mi>Γ</mi></math></span> there is a set <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> which is free for <em>f</em>, and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>F</mi><mo>⊆</mo><mi>Γ</mi></math></span> such that for every <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> there is <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> such that <em>A</em> is not free for <em>f</em>. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from <span><span>[20]</span></span> and <span><span>[2]</span></span>.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103607"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cardinal invariants related to Rosenthal families and large-scale topology\",\"authors\":\"Arturo Martínez-Celis, Tomasz Żuchowski\",\"doi\":\"10.1016/j.apal.2025.103607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a function <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, a set <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is <em>free for f</em> if <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>∩</mo><mi>A</mi></math></span> is finite. For a class of functions <span><math><mi>Γ</mi><mo>⊆</mo><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>, we define <span><math><msub><mrow><mi>ros</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> such that for every <span><math><mi>f</mi><mo>∈</mo><mi>Γ</mi></math></span> there is a set <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> which is free for <em>f</em>, and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> as the smallest size of a family <span><math><mi>F</mi><mo>⊆</mo><mi>Γ</mi></math></span> such that for every <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msup></math></span> there is <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> such that <em>A</em> is not free for <em>f</em>. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from <span><span>[20]</span></span> and <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 8\",\"pages\":\"Article 103607\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000569\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
On cardinal invariants related to Rosenthal families and large-scale topology
Given a function , a set is free for f if is finite. For a class of functions , we define as the smallest size of a family such that for every there is a set which is free for f, and as the smallest size of a family such that for every there is such that A is not free for f. We compare several versions of these cardinal invariants with some of the classical cardinal characteristics of the continuum. Using these notions, we partially answer some questions from [20] and [2].
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.