复三对角量子哈密顿量与矩阵连分式

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Miloslav Znojil
{"title":"复三对角量子哈密顿量与矩阵连分式","authors":"Miloslav Znojil","doi":"10.1016/j.physleta.2025.130604","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum resonances described by non-Hermitian tridiagonal-matrix Hamiltonians <em>H</em> with complex energy eigenvalues are considered. The possibility is analyzed of the evaluation of quantities <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> known as the singular values of <em>H</em>. What is constructed are self-adjoint block-tridiagonal operators <span><math><mi>H</mi></math></span> (with eigenvalues <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) and their resolvents (defined in terms of a matrix continued fraction, MCF). In an illustrative application of the formalism to the discrete version of conventional <span><math><mi>H</mi><mo>=</mo><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with complex local <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≠</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, the numerical MCF convergence is found quick and, moreover, supported also by a fixed-point-based formal proof.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"551 ","pages":"Article 130604"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex tridiagonal quantum Hamiltonians and matrix continued fractions\",\"authors\":\"Miloslav Znojil\",\"doi\":\"10.1016/j.physleta.2025.130604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantum resonances described by non-Hermitian tridiagonal-matrix Hamiltonians <em>H</em> with complex energy eigenvalues are considered. The possibility is analyzed of the evaluation of quantities <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> known as the singular values of <em>H</em>. What is constructed are self-adjoint block-tridiagonal operators <span><math><mi>H</mi></math></span> (with eigenvalues <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) and their resolvents (defined in terms of a matrix continued fraction, MCF). In an illustrative application of the formalism to the discrete version of conventional <span><math><mi>H</mi><mo>=</mo><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with complex local <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≠</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, the numerical MCF convergence is found quick and, moreover, supported also by a fixed-point-based formal proof.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"551 \",\"pages\":\"Article 130604\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125003846\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003846","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑了具有复能量特征值的非厄米三对角矩阵哈密顿量H所描述的量子共振。分析了H的奇异值σn求值的可能性,构造了自伴随块-三对角算子H(特征值σn)及其解(用矩阵连分式MCF定义)。在复局部V(x)≠V * (x)的离散形式H= - d2/dx2+V(x)的例子应用中,我们发现了MCF的数值收敛性,并且得到了基于不动点的形式证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex tridiagonal quantum Hamiltonians and matrix continued fractions
Quantum resonances described by non-Hermitian tridiagonal-matrix Hamiltonians H with complex energy eigenvalues are considered. The possibility is analyzed of the evaluation of quantities σn known as the singular values of H. What is constructed are self-adjoint block-tridiagonal operators H (with eigenvalues σn) and their resolvents (defined in terms of a matrix continued fraction, MCF). In an illustrative application of the formalism to the discrete version of conventional H=d2/dx2+V(x) with complex local V(x)V(x), the numerical MCF convergence is found quick and, moreover, supported also by a fixed-point-based formal proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信