{"title":"弱o极小型","authors":"Slavko Moconja , Predrag Tanović","doi":"10.1016/j.apal.2025.103605","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type <span><math><mi>p</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is weakly o-minimal if for some relatively <em>A</em>-definable linear order, <, on <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> every relatively <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>-definable subset of <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has finitely many convex components in <span><math><mo>(</mo><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>,</mo><mo><</mo><mo>)</mo></math></span>. We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103605"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly o-minimal types\",\"authors\":\"Slavko Moconja , Predrag Tanović\",\"doi\":\"10.1016/j.apal.2025.103605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type <span><math><mi>p</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is weakly o-minimal if for some relatively <em>A</em>-definable linear order, <, on <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> every relatively <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>-definable subset of <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has finitely many convex components in <span><math><mo>(</mo><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>,</mo><mo><</mo><mo>)</mo></math></span>. We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 9\",\"pages\":\"Article 103605\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000545\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type is weakly o-minimal if for some relatively A-definable linear order, <, on every relatively -definable subset of has finitely many convex components in . We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.