弱o极小型

IF 0.6 2区 数学 Q2 LOGIC
Slavko Moconja , Predrag Tanović
{"title":"弱o极小型","authors":"Slavko Moconja ,&nbsp;Predrag Tanović","doi":"10.1016/j.apal.2025.103605","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type <span><math><mi>p</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is weakly o-minimal if for some relatively <em>A</em>-definable linear order, &lt;, on <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> every relatively <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>-definable subset of <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has finitely many convex components in <span><math><mo>(</mo><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>,</mo><mo>&lt;</mo><mo>)</mo></math></span>. We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 9","pages":"Article 103605"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly o-minimal types\",\"authors\":\"Slavko Moconja ,&nbsp;Predrag Tanović\",\"doi\":\"10.1016/j.apal.2025.103605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type <span><math><mi>p</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is weakly o-minimal if for some relatively <em>A</em>-definable linear order, &lt;, on <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> every relatively <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>-definable subset of <span><math><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has finitely many convex components in <span><math><mo>(</mo><mi>p</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>,</mo><mo>&lt;</mo><mo>)</mo></math></span>. We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 9\",\"pages\":\"Article 103605\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000545\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在任意一阶理论中引入并研究了完全类型下的弱极小性。如果在p(C)上p∈S(A)是弱o-极小型的,对于某个相对A-可定义的线性序列<;, p(C)上p(C)的每个相对lc -可定义的子集在(p(C),<)中有有限多个凸分量。我们建立了弱o极小型的许多很好的性质。例如,我们证明了弱o-极小型是dp-极小型,并且在稳定理论中具有若干权重- 1型的性质,并且证明了在弱o-极小型的轨迹上相对可定义函数的单调性定理的一个版本成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly o-minimal types
We introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type pS(A) is weakly o-minimal if for some relatively A-definable linear order, <, on p(C) every relatively LC-definable subset of p(C) has finitely many convex components in (p(C),<). We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信