在小鼠卵母细胞发育过程中,ZAR1和ZAR2调控母体mRNA聚腺苷化的动态

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu-Ke Wu, Ruibao Su, Zhi-Yan Jiang, Yun-Wen Wu, Yan Rong, Shu-Yan Ji, Jingwen Liu, Zhuoyue Niu, Zhiyi Li, Yuanchao Xue, Falong Lu, Heng-Yu Fan
{"title":"在小鼠卵母细胞发育过程中,ZAR1和ZAR2调控母体mRNA聚腺苷化的动态","authors":"Yu-Ke Wu, Ruibao Su, Zhi-Yan Jiang, Yun-Wen Wu, Yan Rong, Shu-Yan Ji, Jingwen Liu, Zhuoyue Niu, Zhiyi Li, Yuanchao Xue, Falong Lu, Heng-Yu Fan","doi":"10.1186/s13059-025-03593-8","DOIUrl":null,"url":null,"abstract":"During meiosis, the oocyte genome keeps dormant for a long time until zygotic genome activation. The dynamics and homeostasis of the maternal transcriptome are essential for maternal-to-zygotic transition. Zygotic arrest 1 (ZAR1) and its homolog, ZAR2, are RNA-binding proteins that are important for the regulation of maternal mRNA stability. Smart-seq2 analysis reveals drastically downregulated maternal transcripts. However, the detection of transcript levels by Smart-seq2 may be biased by the polyadenylated tail length of the mRNAs. Similarly, differential expression of maternal transcripts in oocytes with or without Zar1/2 differs when analyzed using total RNA-seq and Smart-seq2, suggesting an influence of polyadenylation. Combined analyses using total RNA-seq, LACE-seq, PAIso-seq2, and immunoprecipitation-mass spectrometry reveals that ZAR1 may target the 3’-untranslated regions of maternal transcripts, regulates their stability in germinal vesicle stage oocytes, and interacts with other proteins to control the polyadenylation of mRNAs. The jointly analyzed multi-omics data highlight the limitations of Smart-seq2 in oocytes, clarify the dynamics of the maternal transcriptome, and uncover new roles of ZAR1 in regulating the maternal transcriptome.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"48 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZAR1 and ZAR2 orchestrate the dynamics of maternal mRNA polyadenylation during mouse oocyte development\",\"authors\":\"Yu-Ke Wu, Ruibao Su, Zhi-Yan Jiang, Yun-Wen Wu, Yan Rong, Shu-Yan Ji, Jingwen Liu, Zhuoyue Niu, Zhiyi Li, Yuanchao Xue, Falong Lu, Heng-Yu Fan\",\"doi\":\"10.1186/s13059-025-03593-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During meiosis, the oocyte genome keeps dormant for a long time until zygotic genome activation. The dynamics and homeostasis of the maternal transcriptome are essential for maternal-to-zygotic transition. Zygotic arrest 1 (ZAR1) and its homolog, ZAR2, are RNA-binding proteins that are important for the regulation of maternal mRNA stability. Smart-seq2 analysis reveals drastically downregulated maternal transcripts. However, the detection of transcript levels by Smart-seq2 may be biased by the polyadenylated tail length of the mRNAs. Similarly, differential expression of maternal transcripts in oocytes with or without Zar1/2 differs when analyzed using total RNA-seq and Smart-seq2, suggesting an influence of polyadenylation. Combined analyses using total RNA-seq, LACE-seq, PAIso-seq2, and immunoprecipitation-mass spectrometry reveals that ZAR1 may target the 3’-untranslated regions of maternal transcripts, regulates their stability in germinal vesicle stage oocytes, and interacts with other proteins to control the polyadenylation of mRNAs. The jointly analyzed multi-omics data highlight the limitations of Smart-seq2 in oocytes, clarify the dynamics of the maternal transcriptome, and uncover new roles of ZAR1 in regulating the maternal transcriptome.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03593-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03593-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在减数分裂过程中,卵母细胞基因组休眠很长一段时间,直到合子基因组激活。母体转录组的动态和稳态对母体到合子的转变至关重要。合子阻滞1 (Zygotic arrest 1, ZAR1)及其同源物ZAR2是rna结合蛋白,对母体mRNA稳定性的调控起重要作用。Smart-seq2分析显示母体转录本急剧下调。然而,Smart-seq2对转录物水平的检测可能会受到mrna聚腺苷化尾部长度的影响。同样,当使用总RNA-seq和Smart-seq2分析具有或不具有Zar1/2的卵母细胞中母体转录物的差异表达时,差异也不同,这表明聚腺苷化的影响。利用总RNA-seq、LACE-seq、paso -seq2和免疫沉淀-质谱分析表明,ZAR1可能靶向母体转录本的3 ' -非翻译区,调节其在生发囊泡期卵母细胞中的稳定性,并与其他蛋白相互作用以控制mrna的聚腺苷化。共同分析的多组学数据突出了Smart-seq2在卵母细胞中的局限性,阐明了母体转录组的动态,揭示了ZAR1在调节母体转录组中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZAR1 and ZAR2 orchestrate the dynamics of maternal mRNA polyadenylation during mouse oocyte development
During meiosis, the oocyte genome keeps dormant for a long time until zygotic genome activation. The dynamics and homeostasis of the maternal transcriptome are essential for maternal-to-zygotic transition. Zygotic arrest 1 (ZAR1) and its homolog, ZAR2, are RNA-binding proteins that are important for the regulation of maternal mRNA stability. Smart-seq2 analysis reveals drastically downregulated maternal transcripts. However, the detection of transcript levels by Smart-seq2 may be biased by the polyadenylated tail length of the mRNAs. Similarly, differential expression of maternal transcripts in oocytes with or without Zar1/2 differs when analyzed using total RNA-seq and Smart-seq2, suggesting an influence of polyadenylation. Combined analyses using total RNA-seq, LACE-seq, PAIso-seq2, and immunoprecipitation-mass spectrometry reveals that ZAR1 may target the 3’-untranslated regions of maternal transcripts, regulates their stability in germinal vesicle stage oocytes, and interacts with other proteins to control the polyadenylation of mRNAs. The jointly analyzed multi-omics data highlight the limitations of Smart-seq2 in oocytes, clarify the dynamics of the maternal transcriptome, and uncover new roles of ZAR1 in regulating the maternal transcriptome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信