Sandrine Denaud, Gonzalo Sabarís, Marco Di Stefano, Giorgio-Lucio Papadopoulos, Bernd Schuettengruber, Giacomo Cavalli
{"title":"确定果蝇表观遗传和物理染色质结构域之间的功能关系","authors":"Sandrine Denaud, Gonzalo Sabarís, Marco Di Stefano, Giorgio-Lucio Papadopoulos, Bernd Schuettengruber, Giacomo Cavalli","doi":"10.1186/s13059-025-03587-6","DOIUrl":null,"url":null,"abstract":"The tight correlation between topologically associating domains (TADs) and epigenetic domains in Drosophila suggests that the epigenome contributes to define TADs. However, it is still unknown whether histone modifications are essential for TAD formation and structure. By either deleting or shifting key regulatory elements needed to establish the epigenetic signature of Polycomb TADs, we show that the epigenome is not a major driving force for the establishment of TADs. On the other hand, physical domains have an important impact on the formation of epigenetic domains, as they can restrict the spreading of repressive histone marks and looping between cis-regulatory elements.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"27 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the functional relationship between epigenetic and physical chromatin domains in Drosophila\",\"authors\":\"Sandrine Denaud, Gonzalo Sabarís, Marco Di Stefano, Giorgio-Lucio Papadopoulos, Bernd Schuettengruber, Giacomo Cavalli\",\"doi\":\"10.1186/s13059-025-03587-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tight correlation between topologically associating domains (TADs) and epigenetic domains in Drosophila suggests that the epigenome contributes to define TADs. However, it is still unknown whether histone modifications are essential for TAD formation and structure. By either deleting or shifting key regulatory elements needed to establish the epigenetic signature of Polycomb TADs, we show that the epigenome is not a major driving force for the establishment of TADs. On the other hand, physical domains have an important impact on the formation of epigenetic domains, as they can restrict the spreading of repressive histone marks and looping between cis-regulatory elements.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03587-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03587-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Determining the functional relationship between epigenetic and physical chromatin domains in Drosophila
The tight correlation between topologically associating domains (TADs) and epigenetic domains in Drosophila suggests that the epigenome contributes to define TADs. However, it is still unknown whether histone modifications are essential for TAD formation and structure. By either deleting or shifting key regulatory elements needed to establish the epigenetic signature of Polycomb TADs, we show that the epigenome is not a major driving force for the establishment of TADs. On the other hand, physical domains have an important impact on the formation of epigenetic domains, as they can restrict the spreading of repressive histone marks and looping between cis-regulatory elements.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.