网络流的多尺度场理论

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Guram Mikaberidze, Oriol Artime, Albert Díaz-Guilera, Raissa M. D’Souza
{"title":"网络流的多尺度场理论","authors":"Guram Mikaberidze, Oriol Artime, Albert Díaz-Guilera, Raissa M. D’Souza","doi":"10.1103/physrevx.15.021044","DOIUrl":null,"url":null,"abstract":"Network flows are pervasive, including the movement of people, transportation of goods, transmission of energy, and dissemination of information; they occur on a range of empirical interconnected systems, from designed infrastructure to naturally evolved networks. Despite the broad spectrum of applications, because of their domain-specific nature and the inherent analytic complexity, a comprehensive theory of network flows is lacking. We introduce a unifying treatment for network flows that considers the fundamental properties of packet symmetries, conservation laws, and routing strategies. For example, electrons in power grids possess interchangeability symmetry, unlike packages sent by postal mail, which are distinguishable. Likewise, packets can be conserved, such as cars in road networks, or dissipated, such as Internet packets that time out. We introduce a hierarchy of analytical field-theoretic approaches to capture the different scales of complexity required. Mean-field analysis uncovers the nature of the transition through which flow becomes unsustainable upon unchecked growth of demand. Mesoscopic field theory accurately accounts for complicated network structures, packet symmetries, and conservation laws and yet is capable of admitting closed-form solutions. Finally, the full-scale field theory allows us to study routing strategies ranging from random diffusion to shortest path. Our theoretical results indicate that flow bottlenecks tend to be near sources for interchangeable packets and near sinks for distinguishable ones, and that dissipation hinders the maximum sustainable throughput for interchangeable packets but can enhance throughput for distinguishable packets. Finally, we showcase the flexibility of our multiscale theory by applying it in two distinct domains of road networks and the neuronal network. Our work paves the way for a more unifying and comprehensive theory of network flows. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"12 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Field Theory for Network Flows\",\"authors\":\"Guram Mikaberidze, Oriol Artime, Albert Díaz-Guilera, Raissa M. D’Souza\",\"doi\":\"10.1103/physrevx.15.021044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network flows are pervasive, including the movement of people, transportation of goods, transmission of energy, and dissemination of information; they occur on a range of empirical interconnected systems, from designed infrastructure to naturally evolved networks. Despite the broad spectrum of applications, because of their domain-specific nature and the inherent analytic complexity, a comprehensive theory of network flows is lacking. We introduce a unifying treatment for network flows that considers the fundamental properties of packet symmetries, conservation laws, and routing strategies. For example, electrons in power grids possess interchangeability symmetry, unlike packages sent by postal mail, which are distinguishable. Likewise, packets can be conserved, such as cars in road networks, or dissipated, such as Internet packets that time out. We introduce a hierarchy of analytical field-theoretic approaches to capture the different scales of complexity required. Mean-field analysis uncovers the nature of the transition through which flow becomes unsustainable upon unchecked growth of demand. Mesoscopic field theory accurately accounts for complicated network structures, packet symmetries, and conservation laws and yet is capable of admitting closed-form solutions. Finally, the full-scale field theory allows us to study routing strategies ranging from random diffusion to shortest path. Our theoretical results indicate that flow bottlenecks tend to be near sources for interchangeable packets and near sinks for distinguishable ones, and that dissipation hinders the maximum sustainable throughput for interchangeable packets but can enhance throughput for distinguishable packets. Finally, we showcase the flexibility of our multiscale theory by applying it in two distinct domains of road networks and the neuronal network. Our work paves the way for a more unifying and comprehensive theory of network flows. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021044\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021044","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

网络流动无处不在,包括人员的流动、货物的运输、能源的传输和信息的传播;它们发生在一系列经验相互关联的系统中,从设计的基础设施到自然进化的网络。尽管应用范围很广,但由于其特定领域的性质和固有的分析复杂性,缺乏一个全面的网络流理论。我们介绍了一种统一的网络流处理方法,它考虑了包对称性、守恒定律和路由策略的基本属性。例如,电网中的电子具有互换性对称性,而不像通过邮政邮件发送的包裹是可区分的。同样,数据包可以是守恒的,比如道路网络中的汽车,也可以是消散的,比如超时的Internet数据包。我们介绍了分析场论方法的层次结构,以捕获所需的不同规模的复杂性。平均场分析揭示了在需求无限制增长的情况下,流动变得不可持续的转变的本质。介观场论准确地解释了复杂的网络结构、包对称性和守恒定律,并且能够承认封闭形式的解。最后,全尺寸场理论允许我们研究从随机扩散到最短路径的路由策略。我们的理论结果表明,流瓶颈倾向于在可互换数据包的源附近和可区分数据包的汇附近,并且耗散阻碍了可互换数据包的最大可持续吞吐量,但可以提高可区分数据包的吞吐量。最后,我们通过将多尺度理论应用于道路网络和神经网络两个不同的领域来展示其灵活性。我们的工作为更统一和全面的网络流理论铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Field Theory for Network Flows
Network flows are pervasive, including the movement of people, transportation of goods, transmission of energy, and dissemination of information; they occur on a range of empirical interconnected systems, from designed infrastructure to naturally evolved networks. Despite the broad spectrum of applications, because of their domain-specific nature and the inherent analytic complexity, a comprehensive theory of network flows is lacking. We introduce a unifying treatment for network flows that considers the fundamental properties of packet symmetries, conservation laws, and routing strategies. For example, electrons in power grids possess interchangeability symmetry, unlike packages sent by postal mail, which are distinguishable. Likewise, packets can be conserved, such as cars in road networks, or dissipated, such as Internet packets that time out. We introduce a hierarchy of analytical field-theoretic approaches to capture the different scales of complexity required. Mean-field analysis uncovers the nature of the transition through which flow becomes unsustainable upon unchecked growth of demand. Mesoscopic field theory accurately accounts for complicated network structures, packet symmetries, and conservation laws and yet is capable of admitting closed-form solutions. Finally, the full-scale field theory allows us to study routing strategies ranging from random diffusion to shortest path. Our theoretical results indicate that flow bottlenecks tend to be near sources for interchangeable packets and near sinks for distinguishable ones, and that dissipation hinders the maximum sustainable throughput for interchangeable packets but can enhance throughput for distinguishable packets. Finally, we showcase the flexibility of our multiscale theory by applying it in two distinct domains of road networks and the neuronal network. Our work paves the way for a more unifying and comprehensive theory of network flows. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信