CLAF-IoT:面向物联网的上下文感知llms增强认证框架

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Abdul Rehman;Kamran Ahmad Awan;Mahmood Ul Hassan;Asadullah Shaikh;Ali Alqazzaz;Korhan Cengiz
{"title":"CLAF-IoT:面向物联网的上下文感知llms增强认证框架","authors":"Abdul Rehman;Kamran Ahmad Awan;Mahmood Ul Hassan;Asadullah Shaikh;Ali Alqazzaz;Korhan Cengiz","doi":"10.1109/JIOT.2025.3567634","DOIUrl":null,"url":null,"abstract":"The significant increase in the number of Internet of Things (IoT) devices in various domains requires robust and adaptive authentication mechanisms. Existing methods often fail to address the dynamic and heterogeneous nature of the IoT ecosystem, resulting in significant security vulnerabilities. This article presents a context-aware LLM-enhanced authentication framework (CLAF-IoT) that dynamically adjusts authentication protocols based on real-time environmental and user-specific contexts. Using the advanced contextual understanding and generation capabilities of large language models (LLMs), the proposed framework enhances both security and usability in highly dynamic IoT environments. Key components include environmental context sensing, user behavior analysis, adaptive authentication protocols, real-time threat detection, and federated learning integration for continuous improvement and privacy preservation. Experimental evaluations demonstrate that CLAF-IoT achieves higher authentication accuracy in different scenarios, 11.11% false acceptance rate and 9.09% false rejection rate.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 14","pages":"28639-28646"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLAF-IoT: Context-Aware LLMs-Enhanced Authentication Framework for Internet of Things\",\"authors\":\"Abdul Rehman;Kamran Ahmad Awan;Mahmood Ul Hassan;Asadullah Shaikh;Ali Alqazzaz;Korhan Cengiz\",\"doi\":\"10.1109/JIOT.2025.3567634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant increase in the number of Internet of Things (IoT) devices in various domains requires robust and adaptive authentication mechanisms. Existing methods often fail to address the dynamic and heterogeneous nature of the IoT ecosystem, resulting in significant security vulnerabilities. This article presents a context-aware LLM-enhanced authentication framework (CLAF-IoT) that dynamically adjusts authentication protocols based on real-time environmental and user-specific contexts. Using the advanced contextual understanding and generation capabilities of large language models (LLMs), the proposed framework enhances both security and usability in highly dynamic IoT environments. Key components include environmental context sensing, user behavior analysis, adaptive authentication protocols, real-time threat detection, and federated learning integration for continuous improvement and privacy preservation. Experimental evaluations demonstrate that CLAF-IoT achieves higher authentication accuracy in different scenarios, 11.11% false acceptance rate and 9.09% false rejection rate.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 14\",\"pages\":\"28639-28646\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10990157/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10990157/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)设备在各个领域的数量显著增加,需要鲁棒性和自适应的认证机制。现有的方法往往无法解决物联网生态系统的动态性和异构性,从而导致重大的安全漏洞。本文介绍了一个上下文感知的llm增强身份验证框架(CLAF-IoT),它可以根据实时环境和特定于用户的上下文动态调整身份验证协议。利用大型语言模型(llm)的高级上下文理解和生成能力,所提出的框架增强了高度动态物联网环境中的安全性和可用性。关键组件包括环境上下文感知、用户行为分析、自适应身份验证协议、实时威胁检测以及用于持续改进和隐私保护的联邦学习集成。实验评估表明,CLAF-IoT在不同场景下都有较高的认证准确率,错误接受率为11.11%,错误拒绝率为9.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLAF-IoT: Context-Aware LLMs-Enhanced Authentication Framework for Internet of Things
The significant increase in the number of Internet of Things (IoT) devices in various domains requires robust and adaptive authentication mechanisms. Existing methods often fail to address the dynamic and heterogeneous nature of the IoT ecosystem, resulting in significant security vulnerabilities. This article presents a context-aware LLM-enhanced authentication framework (CLAF-IoT) that dynamically adjusts authentication protocols based on real-time environmental and user-specific contexts. Using the advanced contextual understanding and generation capabilities of large language models (LLMs), the proposed framework enhances both security and usability in highly dynamic IoT environments. Key components include environmental context sensing, user behavior analysis, adaptive authentication protocols, real-time threat detection, and federated learning integration for continuous improvement and privacy preservation. Experimental evaluations demonstrate that CLAF-IoT achieves higher authentication accuracy in different scenarios, 11.11% false acceptance rate and 9.09% false rejection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信