因果关系在可解释人工智能中的作用

Gianluca Carloni, Andrea Berti, Sara Colantonio
{"title":"因果关系在可解释人工智能中的作用","authors":"Gianluca Carloni, Andrea Berti, Sara Colantonio","doi":"10.1002/widm.70015","DOIUrl":null,"url":null,"abstract":"Causality and eXplainable Artificial Intelligence (XAI) have developed as separate fields in computer science, even though the underlying concepts of causation and explanation share common ancient roots. This is further enforced by the lack of review works jointly covering these two fields. In this paper, we investigate the literature to try to understand how and to what extent causality and XAI are intertwined. More precisely, we seek to uncover what kinds of relationships exist between the two concepts and how one can benefit from them, for instance, in building trust in AI systems. As a result, three main perspectives are identified. In the first one, the lack of causality is seen as one of the major limitations of current AI and XAI approaches, and the “optimal” form of explanations is investigated. The second is a pragmatic perspective and considers XAI as a tool to foster scientific exploration for causal inquiry, via the identification of pursue‐worthy experimental manipulations. Finally, the third perspective supports the idea that causality is propaedeutic to XAI in three possible manners: exploiting concepts borrowed from causality to support or improve XAI, utilizing counterfactuals for explainability, and considering accessing a causal model as explaining itself. To complement our analysis, we also provide relevant software solutions used to automate causal tasks. We believe our work provides a unified view of the two fields of causality and XAI by highlighting potential domain bridges and uncovering possible limitations.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Causality in Explainable Artificial Intelligence\",\"authors\":\"Gianluca Carloni, Andrea Berti, Sara Colantonio\",\"doi\":\"10.1002/widm.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causality and eXplainable Artificial Intelligence (XAI) have developed as separate fields in computer science, even though the underlying concepts of causation and explanation share common ancient roots. This is further enforced by the lack of review works jointly covering these two fields. In this paper, we investigate the literature to try to understand how and to what extent causality and XAI are intertwined. More precisely, we seek to uncover what kinds of relationships exist between the two concepts and how one can benefit from them, for instance, in building trust in AI systems. As a result, three main perspectives are identified. In the first one, the lack of causality is seen as one of the major limitations of current AI and XAI approaches, and the “optimal” form of explanations is investigated. The second is a pragmatic perspective and considers XAI as a tool to foster scientific exploration for causal inquiry, via the identification of pursue‐worthy experimental manipulations. Finally, the third perspective supports the idea that causality is propaedeutic to XAI in three possible manners: exploiting concepts borrowed from causality to support or improve XAI, utilizing counterfactuals for explainability, and considering accessing a causal model as explaining itself. To complement our analysis, we also provide relevant software solutions used to automate causal tasks. We believe our work provides a unified view of the two fields of causality and XAI by highlighting potential domain bridges and uncovering possible limitations.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.70015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果关系和可解释人工智能(XAI)在计算机科学中已经发展成为独立的领域,尽管因果关系和解释的基本概念有着共同的古老根源。由于缺乏联合涉及这两个领域的审查工作,这进一步加剧了这种情况。在本文中,我们调查了文献,试图了解因果关系和XAI是如何以及在多大程度上交织在一起的。更准确地说,我们试图揭示这两个概念之间存在什么样的关系,以及人们如何从中受益,例如,在人工智能系统中建立信任。因此,确定了三个主要观点。在第一篇文章中,缺乏因果关系被视为当前AI和XAI方法的主要限制之一,并研究了“最佳”解释形式。第二种是务实的观点,认为XAI是一种工具,通过识别值得追求的实验操作,促进科学探索的因果探究。最后,第三种观点支持因果关系以三种可能的方式促进XAI的观点:利用从因果关系中借来的概念来支持或改进XAI,利用反事实来解释,并考虑访问因果模型来解释自身。为了补充我们的分析,我们还提供了用于自动化因果任务的相关软件解决方案。我们相信我们的工作通过突出潜在的领域桥梁和揭示可能的局限性,提供了因果关系和XAI两个领域的统一视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Causality in Explainable Artificial Intelligence
Causality and eXplainable Artificial Intelligence (XAI) have developed as separate fields in computer science, even though the underlying concepts of causation and explanation share common ancient roots. This is further enforced by the lack of review works jointly covering these two fields. In this paper, we investigate the literature to try to understand how and to what extent causality and XAI are intertwined. More precisely, we seek to uncover what kinds of relationships exist between the two concepts and how one can benefit from them, for instance, in building trust in AI systems. As a result, three main perspectives are identified. In the first one, the lack of causality is seen as one of the major limitations of current AI and XAI approaches, and the “optimal” form of explanations is investigated. The second is a pragmatic perspective and considers XAI as a tool to foster scientific exploration for causal inquiry, via the identification of pursue‐worthy experimental manipulations. Finally, the third perspective supports the idea that causality is propaedeutic to XAI in three possible manners: exploiting concepts borrowed from causality to support or improve XAI, utilizing counterfactuals for explainability, and considering accessing a causal model as explaining itself. To complement our analysis, we also provide relevant software solutions used to automate causal tasks. We believe our work provides a unified view of the two fields of causality and XAI by highlighting potential domain bridges and uncovering possible limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信