Paras Verma, Deeksha Thakur, Deepanshi Awasthi, Shashi Bhushan Pandit
{"title":"外显子命名和转录本分类(ENACT)为外显子属性的注释提供了一个系统的框架","authors":"Paras Verma, Deeksha Thakur, Deepanshi Awasthi, Shashi Bhushan Pandit","doi":"10.1101/gr.279878.124","DOIUrl":null,"url":null,"abstract":"Isoform diversity is known to enhance a gene's functional repertoire by producing protein variants with distinct functional implications. Despite numerous studies on transcriptome diversifying processes (alternative splicing/transcription), understanding their extent and correlated impact on proteome diversity remains limited owing to dearth of subsequent proteogenomic consequences. To coalesce the genomic information embedded in exons with isoform sequences, we present an innovative framework, “Exon Nomenclature and Classification of Transcripts” (ENACT). This centralizes exonic loci such that protein sequence information is integrated (onto the available/annotated or new transcripts) while enabling tracking and assessing splice-site variability through unique yielded descriptors. The resulting annotation from the ENACT framework enables exon features to be tractable, facilitating a systematic analysis of isoform diversity. Our findings and case studies unveil systemic exon inclusion roles in regulating diversity in coding region. Correspondingly, annotation of protein-coding genes and associated transcripts from <em>C. elegans</em>, <em>D. melanogaster</em>, <em>D. rerio</em>, <em>M. musculus</em>, and <em>H. sapiens</em> are publicly accessible in a dedicated resource.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"43 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exon nomenclature and classification of transcripts (ENACT) provides a systematic framework to annotate exon attributes\",\"authors\":\"Paras Verma, Deeksha Thakur, Deepanshi Awasthi, Shashi Bhushan Pandit\",\"doi\":\"10.1101/gr.279878.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isoform diversity is known to enhance a gene's functional repertoire by producing protein variants with distinct functional implications. Despite numerous studies on transcriptome diversifying processes (alternative splicing/transcription), understanding their extent and correlated impact on proteome diversity remains limited owing to dearth of subsequent proteogenomic consequences. To coalesce the genomic information embedded in exons with isoform sequences, we present an innovative framework, “Exon Nomenclature and Classification of Transcripts” (ENACT). This centralizes exonic loci such that protein sequence information is integrated (onto the available/annotated or new transcripts) while enabling tracking and assessing splice-site variability through unique yielded descriptors. The resulting annotation from the ENACT framework enables exon features to be tractable, facilitating a systematic analysis of isoform diversity. Our findings and case studies unveil systemic exon inclusion roles in regulating diversity in coding region. Correspondingly, annotation of protein-coding genes and associated transcripts from <em>C. elegans</em>, <em>D. melanogaster</em>, <em>D. rerio</em>, <em>M. musculus</em>, and <em>H. sapiens</em> are publicly accessible in a dedicated resource.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279878.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279878.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exon nomenclature and classification of transcripts (ENACT) provides a systematic framework to annotate exon attributes
Isoform diversity is known to enhance a gene's functional repertoire by producing protein variants with distinct functional implications. Despite numerous studies on transcriptome diversifying processes (alternative splicing/transcription), understanding their extent and correlated impact on proteome diversity remains limited owing to dearth of subsequent proteogenomic consequences. To coalesce the genomic information embedded in exons with isoform sequences, we present an innovative framework, “Exon Nomenclature and Classification of Transcripts” (ENACT). This centralizes exonic loci such that protein sequence information is integrated (onto the available/annotated or new transcripts) while enabling tracking and assessing splice-site variability through unique yielded descriptors. The resulting annotation from the ENACT framework enables exon features to be tractable, facilitating a systematic analysis of isoform diversity. Our findings and case studies unveil systemic exon inclusion roles in regulating diversity in coding region. Correspondingly, annotation of protein-coding genes and associated transcripts from C. elegans, D. melanogaster, D. rerio, M. musculus, and H. sapiens are publicly accessible in a dedicated resource.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.