{"title":"N,N′功能化苯并咪唑盐及其银(I)-N杂环卡宾配合物衍生的新型抗癌药物的细胞毒性、细胞系选择性和促凋亡活性","authors":"Choon Hoe Wong, Boon-Keat Khor, Vikneswaran Murugaiyah, Nelson Jeng-Yeou Chear, WanSinn Yam","doi":"10.1002/ddr.70100","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A new series of <i>N</i>-decyl-<i>N</i>’-benzylbenzimidazolium <i>N</i>-heterocyclic carbene (NHC) precursors and their mononuclear silver(I)-NHC complexes were synthesised and characterised. The benzyl group was functionalised with various <i>para</i> substituents (H, CH<sub>3</sub>, F, Cl, Br, CN, NO<sub>2</sub>). The effect of these substituents on cytotoxicity and cell line selectivity against human cervical cancer (HeLa), oestrogen-positive human breast cancer (MCF-7), and normal skin fibroblasts (Hs-27) was investigated. All compounds exhibited significant growth inhibition against the tested cell lines. The activity and selectivity of the compounds were influenced by the <i>para</i> substituents and the type of cell line. The electron-donating methylated NHC precursor and its silver complex generally demonstrated higher growth inhibition potentials than the analogues with electron-withdrawing groups, except in two cases where the fluorinated compounds were more potent against Hs-27 and HeLa, while the chlorinated NHC precursor was more active against MCF-7. Notably, all compounds, particularly the silver(I)-NHC complexes, were more active towards MCF-7 but less toxic towards Hs-27. The methyl-, bromo-, and cyano-containing silver(I)-NHC complexes broadened the safety windows against MCF-7 (selectivity indices ≥ 3). The most selective (against MCF-7) chlorinated NHC precursor and its silver(I)-NHC exhibited ROS-mediated proapoptotic activity, which indicated that these compounds promoted cell death by inducing intracellular ROS formation and accumulation. Our findings highlight the potential use of silver(I)-NHC complexes in the design and development of safe and selective anticancer agents.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity, Cell Line Selectivity and Proapoptotic Activity of New Anticancer Agents Derived From N,N’-Functionalised Benzimidazolium Salts and Their Silver(I)-N-Heterocyclic Carbene Complexes\",\"authors\":\"Choon Hoe Wong, Boon-Keat Khor, Vikneswaran Murugaiyah, Nelson Jeng-Yeou Chear, WanSinn Yam\",\"doi\":\"10.1002/ddr.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A new series of <i>N</i>-decyl-<i>N</i>’-benzylbenzimidazolium <i>N</i>-heterocyclic carbene (NHC) precursors and their mononuclear silver(I)-NHC complexes were synthesised and characterised. The benzyl group was functionalised with various <i>para</i> substituents (H, CH<sub>3</sub>, F, Cl, Br, CN, NO<sub>2</sub>). The effect of these substituents on cytotoxicity and cell line selectivity against human cervical cancer (HeLa), oestrogen-positive human breast cancer (MCF-7), and normal skin fibroblasts (Hs-27) was investigated. All compounds exhibited significant growth inhibition against the tested cell lines. The activity and selectivity of the compounds were influenced by the <i>para</i> substituents and the type of cell line. The electron-donating methylated NHC precursor and its silver complex generally demonstrated higher growth inhibition potentials than the analogues with electron-withdrawing groups, except in two cases where the fluorinated compounds were more potent against Hs-27 and HeLa, while the chlorinated NHC precursor was more active against MCF-7. Notably, all compounds, particularly the silver(I)-NHC complexes, were more active towards MCF-7 but less toxic towards Hs-27. The methyl-, bromo-, and cyano-containing silver(I)-NHC complexes broadened the safety windows against MCF-7 (selectivity indices ≥ 3). The most selective (against MCF-7) chlorinated NHC precursor and its silver(I)-NHC exhibited ROS-mediated proapoptotic activity, which indicated that these compounds promoted cell death by inducing intracellular ROS formation and accumulation. Our findings highlight the potential use of silver(I)-NHC complexes in the design and development of safe and selective anticancer agents.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70100\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cytotoxicity, Cell Line Selectivity and Proapoptotic Activity of New Anticancer Agents Derived From N,N’-Functionalised Benzimidazolium Salts and Their Silver(I)-N-Heterocyclic Carbene Complexes
A new series of N-decyl-N’-benzylbenzimidazolium N-heterocyclic carbene (NHC) precursors and their mononuclear silver(I)-NHC complexes were synthesised and characterised. The benzyl group was functionalised with various para substituents (H, CH3, F, Cl, Br, CN, NO2). The effect of these substituents on cytotoxicity and cell line selectivity against human cervical cancer (HeLa), oestrogen-positive human breast cancer (MCF-7), and normal skin fibroblasts (Hs-27) was investigated. All compounds exhibited significant growth inhibition against the tested cell lines. The activity and selectivity of the compounds were influenced by the para substituents and the type of cell line. The electron-donating methylated NHC precursor and its silver complex generally demonstrated higher growth inhibition potentials than the analogues with electron-withdrawing groups, except in two cases where the fluorinated compounds were more potent against Hs-27 and HeLa, while the chlorinated NHC precursor was more active against MCF-7. Notably, all compounds, particularly the silver(I)-NHC complexes, were more active towards MCF-7 but less toxic towards Hs-27. The methyl-, bromo-, and cyano-containing silver(I)-NHC complexes broadened the safety windows against MCF-7 (selectivity indices ≥ 3). The most selective (against MCF-7) chlorinated NHC precursor and its silver(I)-NHC exhibited ROS-mediated proapoptotic activity, which indicated that these compounds promoted cell death by inducing intracellular ROS formation and accumulation. Our findings highlight the potential use of silver(I)-NHC complexes in the design and development of safe and selective anticancer agents.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.