lncRNA AK159072通过激活Akt/Foxo1通路促进成肌细胞增殖和肌肉再生

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Si Lei, Rui Chen, Huacai Shi, Shanyao Zhou, Yanling She
{"title":"lncRNA AK159072通过激活Akt/Foxo1通路促进成肌细胞增殖和肌肉再生","authors":"Si Lei,&nbsp;Rui Chen,&nbsp;Huacai Shi,&nbsp;Shanyao Zhou,&nbsp;Yanling She","doi":"10.1002/jbt.70292","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Long non-coding RNAs (lncRNAs) are significant regulators of myoblast proliferation, migration and regeneration. In our previous research, we identified that lncRNA AK159072 was differentially expressed during myoblast development. In this study, we would like to explore the regulatory role and the mechanisms of AK159072 in proliferation. We discovered that AK159072 was increasingly expressed during myoblast proliferation and was located in both the nucleus and cytoplasm of proliferating C2C12 myoblast<b>s</b>. Overexpression of AK159072 promoted the expression of proliferation-related genes c-Myc, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6 in C2C12 myoblasts. Additionally, the cell viability and EdU-positive cells were increased, while the wound size was decreased after overexpression AK159072. In contrast, cell proliferation was attenuated when AK159072 was successfully silenced. Furthermore, the cross sectional area (CSA) and proliferative markers were decreased after knockdown of AK159072 in the mouse hind leg muscles with CTX-induced injury in vivo, indicating that knockdown of AK159072 may delay muscle regeneration. The study further demonstrated that Akt/Foxo1 pathway mediated the effects of AK159072 overexpression and knockdown in myoblasts. Taken together, our results suggested that AK159072 may regulate myoblast proliferation and muscle regeneration via Akt/Foxo1 pathway. The study suggestd that modulating the expression of AK159072 could be a potential therapeutic strategy for muscle injuries, this could have significant clinical relevance for conditions such as muscular dystrophy, sarcopenia, and other muscle disorders.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"lncRNA AK159072 Promotes Myoblast Proliferation and Muscle Regeneration Through Activation of Akt/Foxo1 Pathway\",\"authors\":\"Si Lei,&nbsp;Rui Chen,&nbsp;Huacai Shi,&nbsp;Shanyao Zhou,&nbsp;Yanling She\",\"doi\":\"10.1002/jbt.70292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Long non-coding RNAs (lncRNAs) are significant regulators of myoblast proliferation, migration and regeneration. In our previous research, we identified that lncRNA AK159072 was differentially expressed during myoblast development. In this study, we would like to explore the regulatory role and the mechanisms of AK159072 in proliferation. We discovered that AK159072 was increasingly expressed during myoblast proliferation and was located in both the nucleus and cytoplasm of proliferating C2C12 myoblast<b>s</b>. Overexpression of AK159072 promoted the expression of proliferation-related genes c-Myc, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6 in C2C12 myoblasts. Additionally, the cell viability and EdU-positive cells were increased, while the wound size was decreased after overexpression AK159072. In contrast, cell proliferation was attenuated when AK159072 was successfully silenced. Furthermore, the cross sectional area (CSA) and proliferative markers were decreased after knockdown of AK159072 in the mouse hind leg muscles with CTX-induced injury in vivo, indicating that knockdown of AK159072 may delay muscle regeneration. The study further demonstrated that Akt/Foxo1 pathway mediated the effects of AK159072 overexpression and knockdown in myoblasts. Taken together, our results suggested that AK159072 may regulate myoblast proliferation and muscle regeneration via Akt/Foxo1 pathway. The study suggestd that modulating the expression of AK159072 could be a potential therapeutic strategy for muscle injuries, this could have significant clinical relevance for conditions such as muscular dystrophy, sarcopenia, and other muscle disorders.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70292\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70292","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

长链非编码rna (lncRNAs)是成肌细胞增殖、迁移和再生的重要调控因子。在我们之前的研究中,我们发现lncRNA AK159072在成肌细胞发育过程中存在差异表达。在本研究中,我们想探究AK159072在细胞增殖中的调控作用及其机制。我们发现AK159072在成肌细胞增殖过程中表达增加,并且位于增殖的C2C12成肌细胞的细胞核和细胞质中。过表达AK159072可促进C2C12成肌细胞中增殖相关基因c-Myc、细胞周期蛋白依赖性激酶2 (CDK2)、CDK4和CDK6的表达。此外,过表达AK159072后,细胞活力和edu阳性细胞增加,伤口大小减小。相比之下,成功沉默AK159072后,细胞增殖减弱。此外,在体内ctx诱导的小鼠后腿肌肉损伤中,敲低AK159072后,横截面积(CSA)和增殖标志物均降低,表明敲低AK159072可能延迟肌肉再生。本研究进一步证实Akt/Foxo1通路介导了AK159072在成肌细胞中的过表达和低表达作用。综上所述,我们的研究结果表明AK159072可能通过Akt/Foxo1途径调节成肌细胞增殖和肌肉再生。该研究表明,调节AK159072的表达可能是肌肉损伤的一种潜在治疗策略,这可能对肌肉萎缩症、肌肉减少症和其他肌肉疾病等疾病具有重要的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
lncRNA AK159072 Promotes Myoblast Proliferation and Muscle Regeneration Through Activation of Akt/Foxo1 Pathway

Long non-coding RNAs (lncRNAs) are significant regulators of myoblast proliferation, migration and regeneration. In our previous research, we identified that lncRNA AK159072 was differentially expressed during myoblast development. In this study, we would like to explore the regulatory role and the mechanisms of AK159072 in proliferation. We discovered that AK159072 was increasingly expressed during myoblast proliferation and was located in both the nucleus and cytoplasm of proliferating C2C12 myoblasts. Overexpression of AK159072 promoted the expression of proliferation-related genes c-Myc, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6 in C2C12 myoblasts. Additionally, the cell viability and EdU-positive cells were increased, while the wound size was decreased after overexpression AK159072. In contrast, cell proliferation was attenuated when AK159072 was successfully silenced. Furthermore, the cross sectional area (CSA) and proliferative markers were decreased after knockdown of AK159072 in the mouse hind leg muscles with CTX-induced injury in vivo, indicating that knockdown of AK159072 may delay muscle regeneration. The study further demonstrated that Akt/Foxo1 pathway mediated the effects of AK159072 overexpression and knockdown in myoblasts. Taken together, our results suggested that AK159072 may regulate myoblast proliferation and muscle regeneration via Akt/Foxo1 pathway. The study suggestd that modulating the expression of AK159072 could be a potential therapeutic strategy for muscle injuries, this could have significant clinical relevance for conditions such as muscular dystrophy, sarcopenia, and other muscle disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信