利用空间多模态数据揭示肿瘤时空异质性

IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Chunman Zuo, Junchao Zhu, Jiawei Zou, Luonan Chen
{"title":"利用空间多模态数据揭示肿瘤时空异质性","authors":"Chunman Zuo,&nbsp;Junchao Zhu,&nbsp;Jiawei Zou,&nbsp;Luonan Chen","doi":"10.1002/ctm2.70331","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies.</p>\n </section>\n \n <section>\n \n <h3> Key points</h3>\n \n <div>\n <ul>\n \n <li>\n <p>Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity.</p>\n </li>\n \n <li>\n <p>AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics.</p>\n </li>\n \n <li>\n <p>Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.</p>\n </li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 5","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70331","citationCount":"0","resultStr":"{\"title\":\"Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data\",\"authors\":\"Chunman Zuo,&nbsp;Junchao Zhu,&nbsp;Jiawei Zou,&nbsp;Luonan Chen\",\"doi\":\"10.1002/ctm2.70331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Key points</h3>\\n \\n <div>\\n <ul>\\n \\n <li>\\n <p>Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity.</p>\\n </li>\\n \\n <li>\\n <p>AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics.</p>\\n </li>\\n \\n <li>\\n <p>Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.</p>\\n </li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":10189,\"journal\":{\"name\":\"Clinical and Translational Medicine\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70331\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70331\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70331","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在细胞的空间背景下分析基因组、表观基因组、转录组、蛋白质组和代谢组改变了我们对肿瘤时空异质性的理解。空间多组学技术的进步揭示了形成细胞行为和组织动力学的复杂分子相互作用。本文综述了具有先进的空间域识别及其伪关系的关键技术和计算方法,以及驱动疾病进展的细胞内和细胞间分子网络的推断。我们还讨论了应对主要挑战的策略,包括数据稀疏性、高维性、可伸缩性和异构性。此外,我们概述了空间多组学如何使对疾病机制的新见解,推进精准医学和为靶向治疗提供信息。空间多组学的发展促进了我们对肿瘤时空异质性的认识。人工智能驱动的多模态模型揭示了细胞行为和组织动力学背后复杂的分子相互作用。将多组学技术和人工智能支持的生物信息学工具相结合,有助于预测癌症前期等关键疾病阶段,推进精准医疗,并为有针对性的治疗策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data

Unravelling tumour spatiotemporal heterogeneity using spatial multimodal data

Analysing the genome, epigenome, transcriptome, proteome, and metabolome within the spatial context of cells has transformed our understanding of tumour spatiotemporal heterogeneity. Advances in spatial multi-omics technologies now reveal complex molecular interactions shaping cellular behaviour and tissue dynamics. This review highlights key technologies and computational methods that have advanced spatial domain identification and their pseudo-relations, as well as inference of intra- and inter-cellular molecular networks that drive disease progression. We also discuss strategies to address major challenges, including data sparsity, high-dimensionality, scalability, and heterogeneity. Furthermore, we outline how spatial multi-omics enables novel insights into disease mechanisms, advancing precision medicine and informing targeted therapies.

Key points

  • Advancements in spatial multi-omics facilitate our understanding of tumour spatiotemporal heterogeneity.

  • AI-driven multimodal models uncover complex molecular interactions that underlie cellular behaviours and tissue dynamics.

  • Combining multi-omics technologies and AI-enabled bioinformatics tools helps predict critical disease stages, such as pre-cancer, advancing precision medicine, and informing targeted therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
1.90%
发文量
450
审稿时长
4 weeks
期刊介绍: Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信