VAIM-CFF:从深度虚拟排他反应中提取康普顿形状因子的变分自编码器逆映射解决方案

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Manal Almaeen, Tareq Alghamdi, Brandon Kriesten, Douglas Adams, Yaohang Li, Huey-Wen Lin, Simonetta Liuti
{"title":"VAIM-CFF:从深度虚拟排他反应中提取康普顿形状因子的变分自编码器逆映射解决方案","authors":"Manal Almaeen,&nbsp;Tareq Alghamdi,&nbsp;Brandon Kriesten,&nbsp;Douglas Adams,&nbsp;Yaohang Li,&nbsp;Huey-Wen Lin,&nbsp;Simonetta Liuti","doi":"10.1140/epjc/s10052-025-14091-3","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14091-3.pdf","citationCount":"0","resultStr":"{\"title\":\"VAIM-CFF: a variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions\",\"authors\":\"Manal Almaeen,&nbsp;Tareq Alghamdi,&nbsp;Brandon Kriesten,&nbsp;Douglas Adams,&nbsp;Yaohang Li,&nbsp;Huey-Wen Lin,&nbsp;Simonetta Liuti\",\"doi\":\"10.1140/epjc/s10052-025-14091-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14091-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14091-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14091-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种新的方法,用于从深度虚拟排他反应(如非极化DVCS横截面)中提取康普顿形状因子(cff),使用专门的反问题求解器,变分自编码器逆映射器(VAIM)。VAIM-CFF框架不仅允许我们在从单个横截面测量中提取所有8个cff时访问可能包含多个解的拟合解集,而且还可以访问从cff到横截面的前向映射中包含的丢失信息。我们研究了各种假设及其对预测cff的影响,如截面组织、提取的cff数量、不确定度量化技术的使用以及先前物理信息的包含。然后,我们使用降维技术,如主成分分析来可视化在VAIM框架的潜在空间中跟踪的缺失物理信息。通过将cff的提取重新定义为一个逆问题,我们获得了在标准拟合方法中无法理解的问题的基本属性:探索在深度虚拟独占实验中编码的信息的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VAIM-CFF: a variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions

We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信