{"title":"VAIM-CFF:从深度虚拟排他反应中提取康普顿形状因子的变分自编码器逆映射解决方案","authors":"Manal Almaeen, Tareq Alghamdi, Brandon Kriesten, Douglas Adams, Yaohang Li, Huey-Wen Lin, Simonetta Liuti","doi":"10.1140/epjc/s10052-025-14091-3","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14091-3.pdf","citationCount":"0","resultStr":"{\"title\":\"VAIM-CFF: a variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions\",\"authors\":\"Manal Almaeen, Tareq Alghamdi, Brandon Kriesten, Douglas Adams, Yaohang Li, Huey-Wen Lin, Simonetta Liuti\",\"doi\":\"10.1140/epjc/s10052-025-14091-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14091-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14091-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14091-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
VAIM-CFF: a variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions
We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.