由Treewidth参数化的弦/间隔顶点删除紧边界

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Michał Włodarczyk
{"title":"由Treewidth参数化的弦/间隔顶点删除紧边界","authors":"Michał Włodarczyk","doi":"10.1007/s00453-025-01293-0","DOIUrl":null,"url":null,"abstract":"<div><p>In Chordal/Interval Vertex Deletion we ask how many vertices one needs to remove from a graph to make it chordal (respectively: interval). We study these problems under the parameterization by treewidth <span>\\(\\textbf{tw}\\)</span> of the input graph <i>G</i>. On the one hand, we present an algorithm for Chordal Vertex Deletion with running time <span>\\(2^{\\mathcal {O}(\\textbf{tw})} \\cdot |V(G)|\\)</span>, improving upon the running time <span>\\(2^{\\mathcal {O}(\\textbf{tw}^2)} \\cdot |V(G)|^{\\mathcal {O}(1)}\\)</span> by Jansen, de Kroon, and Włodarczyk (STOC’21). When a tree decomposition of width <span>\\(\\textbf{tw}\\)</span> is given, then the base of the exponent equals <span>\\(2^{\\omega -1}\\cdot 3 + 1\\)</span>. Our algorithm is based on a novel link between chordal graphs and graphic matroids, which allows us to employ the framework of representative families. On the other hand, we prove that Interval Vertex Deletion cannot be solved in time <span>\\(2^{o(\\textbf{tw}\\log \\textbf{tw})} \\cdot |V(G)|^{\\mathcal {O}(1)}\\)</span> assuming the Exponential Time Hypothesis.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 5","pages":"621 - 660"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth\",\"authors\":\"Michał Włodarczyk\",\"doi\":\"10.1007/s00453-025-01293-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Chordal/Interval Vertex Deletion we ask how many vertices one needs to remove from a graph to make it chordal (respectively: interval). We study these problems under the parameterization by treewidth <span>\\\\(\\\\textbf{tw}\\\\)</span> of the input graph <i>G</i>. On the one hand, we present an algorithm for Chordal Vertex Deletion with running time <span>\\\\(2^{\\\\mathcal {O}(\\\\textbf{tw})} \\\\cdot |V(G)|\\\\)</span>, improving upon the running time <span>\\\\(2^{\\\\mathcal {O}(\\\\textbf{tw}^2)} \\\\cdot |V(G)|^{\\\\mathcal {O}(1)}\\\\)</span> by Jansen, de Kroon, and Włodarczyk (STOC’21). When a tree decomposition of width <span>\\\\(\\\\textbf{tw}\\\\)</span> is given, then the base of the exponent equals <span>\\\\(2^{\\\\omega -1}\\\\cdot 3 + 1\\\\)</span>. Our algorithm is based on a novel link between chordal graphs and graphic matroids, which allows us to employ the framework of representative families. On the other hand, we prove that Interval Vertex Deletion cannot be solved in time <span>\\\\(2^{o(\\\\textbf{tw}\\\\log \\\\textbf{tw})} \\\\cdot |V(G)|^{\\\\mathcal {O}(1)}\\\\)</span> assuming the Exponential Time Hypothesis.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"87 5\",\"pages\":\"621 - 660\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-025-01293-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-025-01293-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在Chordal/Interval顶点删除中,我们询问需要从图中删除多少顶点才能使其成为Chordal(分别为:Interval)。我们在输入图g的树宽\(\textbf{tw}\)参数化下研究了这些问题。一方面,我们提出了一个运行时间\(2^{\mathcal {O}(\textbf{tw})} \cdot |V(G)|\)的弦点删除算法,改进了Jansen, de Kroon和Włodarczyk (STOC ' 21)的运行时间\(2^{\mathcal {O}(\textbf{tw}^2)} \cdot |V(G)|^{\mathcal {O}(1)}\)。当给出宽度为\(\textbf{tw}\)的树分解时,则指数的底数等于\(2^{\omega -1}\cdot 3 + 1\)。我们的算法是基于弦图和图形拟阵之间的一种新颖的联系,这使我们能够采用代表性家庭的框架。另一方面,我们证明了在指数时间假设下,区间顶点删除不能在时间\(2^{o(\textbf{tw}\log \textbf{tw})} \cdot |V(G)|^{\mathcal {O}(1)}\)上解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth

Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth

In Chordal/Interval Vertex Deletion we ask how many vertices one needs to remove from a graph to make it chordal (respectively: interval). We study these problems under the parameterization by treewidth \(\textbf{tw}\) of the input graph G. On the one hand, we present an algorithm for Chordal Vertex Deletion with running time \(2^{\mathcal {O}(\textbf{tw})} \cdot |V(G)|\), improving upon the running time \(2^{\mathcal {O}(\textbf{tw}^2)} \cdot |V(G)|^{\mathcal {O}(1)}\) by Jansen, de Kroon, and Włodarczyk (STOC’21). When a tree decomposition of width \(\textbf{tw}\) is given, then the base of the exponent equals \(2^{\omega -1}\cdot 3 + 1\). Our algorithm is based on a novel link between chordal graphs and graphic matroids, which allows us to employ the framework of representative families. On the other hand, we prove that Interval Vertex Deletion cannot be solved in time \(2^{o(\textbf{tw}\log \textbf{tw})} \cdot |V(G)|^{\mathcal {O}(1)}\) assuming the Exponential Time Hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信