{"title":"新型尖晶石高熵陶瓷的合成、拉曼和电学性能研究","authors":"Rajesh K. Mishra, E. B. Araújo, Rohit R. Shahi","doi":"10.1007/s10832-024-00370-0","DOIUrl":null,"url":null,"abstract":"<div><p>Entropy-stabilized ceramics have attracted researchers significantly due to their potential vast multi-functional applications in various engineering fields. The present study emphasizes the synthesis, sintering temperature, Raman, and electrical behavior of a spinel (CoAlFeNTi)<sub>3</sub>O<sub>4</sub> high entropy oxide (HEO). The HEO is synthesized through the modified solid-state reaction method at two different sintering temperatures (1100 °C and 1250 °C) and characterized further with the XRD, Raman, and SEM for structural and microstructural behavior. XRD analysis confirmed the formation of a single cubic spinel phase with the Fd-3 m space group. In addition, Raman analysis also confirmed that the synthesized HEOs have a spinel structure with an inverse spinel nature. With the enhancement of the sintering temperature, XRD analysis indicates that the crystallinity and crystallite size of the HEO enhanced. The current density (J) versus applied electric field (E) characteristics displayed that both 1100 °C and 1250 °C sintered HEOs possessed leakage current density at zero applied electric field and an ohmic conductance of <span>\\(\\:4.59\\times\\:{10}^{-10}\\)</span> mhos/cm and <span>\\(\\:3.43\\times\\:{10}^{-10}\\)</span> mhos/cm respectively. Moreover, J - E characteristics also showed that the enhancement of sintering temperature enhanced the resistive switching behavior of the different temperature sintered spinel HEOs. This improved resistive switching behavior in the J-E curve indicates that the synthesized spinel HEO can find potential application in resistive switching memory devices.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"53 1","pages":"18 - 28"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on synthesis, Raman, and electrical properties of novel spinel high entropy ceramics\",\"authors\":\"Rajesh K. Mishra, E. B. Araújo, Rohit R. Shahi\",\"doi\":\"10.1007/s10832-024-00370-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Entropy-stabilized ceramics have attracted researchers significantly due to their potential vast multi-functional applications in various engineering fields. The present study emphasizes the synthesis, sintering temperature, Raman, and electrical behavior of a spinel (CoAlFeNTi)<sub>3</sub>O<sub>4</sub> high entropy oxide (HEO). The HEO is synthesized through the modified solid-state reaction method at two different sintering temperatures (1100 °C and 1250 °C) and characterized further with the XRD, Raman, and SEM for structural and microstructural behavior. XRD analysis confirmed the formation of a single cubic spinel phase with the Fd-3 m space group. In addition, Raman analysis also confirmed that the synthesized HEOs have a spinel structure with an inverse spinel nature. With the enhancement of the sintering temperature, XRD analysis indicates that the crystallinity and crystallite size of the HEO enhanced. The current density (J) versus applied electric field (E) characteristics displayed that both 1100 °C and 1250 °C sintered HEOs possessed leakage current density at zero applied electric field and an ohmic conductance of <span>\\\\(\\\\:4.59\\\\times\\\\:{10}^{-10}\\\\)</span> mhos/cm and <span>\\\\(\\\\:3.43\\\\times\\\\:{10}^{-10}\\\\)</span> mhos/cm respectively. Moreover, J - E characteristics also showed that the enhancement of sintering temperature enhanced the resistive switching behavior of the different temperature sintered spinel HEOs. This improved resistive switching behavior in the J-E curve indicates that the synthesized spinel HEO can find potential application in resistive switching memory devices.</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"53 1\",\"pages\":\"18 - 28\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-024-00370-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-024-00370-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Studies on synthesis, Raman, and electrical properties of novel spinel high entropy ceramics
Entropy-stabilized ceramics have attracted researchers significantly due to their potential vast multi-functional applications in various engineering fields. The present study emphasizes the synthesis, sintering temperature, Raman, and electrical behavior of a spinel (CoAlFeNTi)3O4 high entropy oxide (HEO). The HEO is synthesized through the modified solid-state reaction method at two different sintering temperatures (1100 °C and 1250 °C) and characterized further with the XRD, Raman, and SEM for structural and microstructural behavior. XRD analysis confirmed the formation of a single cubic spinel phase with the Fd-3 m space group. In addition, Raman analysis also confirmed that the synthesized HEOs have a spinel structure with an inverse spinel nature. With the enhancement of the sintering temperature, XRD analysis indicates that the crystallinity and crystallite size of the HEO enhanced. The current density (J) versus applied electric field (E) characteristics displayed that both 1100 °C and 1250 °C sintered HEOs possessed leakage current density at zero applied electric field and an ohmic conductance of \(\:4.59\times\:{10}^{-10}\) mhos/cm and \(\:3.43\times\:{10}^{-10}\) mhos/cm respectively. Moreover, J - E characteristics also showed that the enhancement of sintering temperature enhanced the resistive switching behavior of the different temperature sintered spinel HEOs. This improved resistive switching behavior in the J-E curve indicates that the synthesized spinel HEO can find potential application in resistive switching memory devices.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.