车联网任务分流:基于drl的DAG调度表示学习方法

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoheng Deng;Haoyu Yang;Jingjing Zhang;Jinsong Gui;Siyu Lin;Xin Wang;Geyong Min
{"title":"车联网任务分流:基于drl的DAG调度表示学习方法","authors":"Xiaoheng Deng;Haoyu Yang;Jingjing Zhang;Jinsong Gui;Siyu Lin;Xin Wang;Geyong Min","doi":"10.1109/TMC.2025.3531887","DOIUrl":null,"url":null,"abstract":"The rapid evolution of the Internet-of-Vehicles (IoV) has amplified the need for mobile computing resources, driving the shift toward offloading tasks to edge servers or vehicles with idle resources to optimize computational efficiency. To this end, an approach based on Deep Reinforcement Learning (DRL) is presented in this paper, termed DVTP, which integrates Variational Graph Attention Networks (VGAT) and Transformer models to optimize Directed Acyclic Graph (DAG) task scheduling in vehicular networks. DVTP effectively captures both the spatiotemporal information and task dependencies, enabling more accurate and efficient task offloading decisions. Extensive simulation experiments demonstrate that DVTP outperforms traditional methods in reducing task completion times across various multi-vehicle and multi-edge server scenarios, showcasing its potential for real-world IoV applications.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 6","pages":"5045-5060"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task Offloading in Internet of Vehicles: A DRL-Based Approach With Representation Learning for DAG Scheduling\",\"authors\":\"Xiaoheng Deng;Haoyu Yang;Jingjing Zhang;Jinsong Gui;Siyu Lin;Xin Wang;Geyong Min\",\"doi\":\"10.1109/TMC.2025.3531887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid evolution of the Internet-of-Vehicles (IoV) has amplified the need for mobile computing resources, driving the shift toward offloading tasks to edge servers or vehicles with idle resources to optimize computational efficiency. To this end, an approach based on Deep Reinforcement Learning (DRL) is presented in this paper, termed DVTP, which integrates Variational Graph Attention Networks (VGAT) and Transformer models to optimize Directed Acyclic Graph (DAG) task scheduling in vehicular networks. DVTP effectively captures both the spatiotemporal information and task dependencies, enabling more accurate and efficient task offloading decisions. Extensive simulation experiments demonstrate that DVTP outperforms traditional methods in reducing task completion times across various multi-vehicle and multi-edge server scenarios, showcasing its potential for real-world IoV applications.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 6\",\"pages\":\"5045-5060\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848209/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10848209/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

车联网(IoV)的快速发展扩大了对移动计算资源的需求,推动了将任务卸载到边缘服务器或具有空闲资源的车辆以优化计算效率的转变。为此,本文提出了一种基于深度强化学习(DRL)的方法,称为DVTP,该方法集成了变分图注意网络(VGAT)和变压器模型来优化车辆网络中的有向无环图(DAG)任务调度。DVTP有效地捕获时空信息和任务依赖关系,从而实现更准确、更有效的任务卸载决策。广泛的仿真实验表明,在各种多车和多边缘服务器场景下,DVTP在减少任务完成时间方面优于传统方法,展示了其在现实世界的车联网应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Offloading in Internet of Vehicles: A DRL-Based Approach With Representation Learning for DAG Scheduling
The rapid evolution of the Internet-of-Vehicles (IoV) has amplified the need for mobile computing resources, driving the shift toward offloading tasks to edge servers or vehicles with idle resources to optimize computational efficiency. To this end, an approach based on Deep Reinforcement Learning (DRL) is presented in this paper, termed DVTP, which integrates Variational Graph Attention Networks (VGAT) and Transformer models to optimize Directed Acyclic Graph (DAG) task scheduling in vehicular networks. DVTP effectively captures both the spatiotemporal information and task dependencies, enabling more accurate and efficient task offloading decisions. Extensive simulation experiments demonstrate that DVTP outperforms traditional methods in reducing task completion times across various multi-vehicle and multi-edge server scenarios, showcasing its potential for real-world IoV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信