{"title":"DeExp:利用可解释人工智能揭示时空移动交通预测的模型漏洞","authors":"Serly Moghadas Gholian;Claudio Fiandrino;Narseo Vallina-Rodríguez;Marco Fiore;Joerg Widmer","doi":"10.1109/TMC.2025.3531544","DOIUrl":null,"url":null,"abstract":"The ability to perform mobile traffic forecasting effectively with Deep Neural Networks (DNN) is instrumental to optimize resource management in 5G and beyond generation mobile networks. However, despite their capabilities, these Deep Neural Networks (DNN)s often act as complex opaque-boxes with decisions that are difficult to interpret. Even worse, they have proven vulnerable to adversarial attacks which undermine their applicability in production networks. Unfortunately, although existing state-of-the-art EXplainable Artificial Intelligence (XAI) techniques are often demonstrated in computer vision and Natural Language Processing (NLP), they may not fully address the unique challenges posed by spatio-temporal time-series forecasting models. To address these challenges, we introduce <sc>DeExp</small> in this paper, a tool that flexibly builds upon legacy EXplainable Artificial Intelligence (XAI) techniques to synthesize compact explanations by making it possible to understand which Base Stations (BSs) are more influential for forecasting from a spatio-temporal perspective. Armed with such knowledge, we run state-of-the-art Adversarial Machine Learning (AML) techniques on those BSs to measure the accuracy degradation of the predictors under adversarial attacks. Our comprehensive evaluation uses real-world mobile traffic datasets and demonstrates that legacy XAI techniques spot different types of vulnerabilities. While Gradient-weighted Class Activation Mapping (GC) is suitable to spot BSs sensitive to moderate/low traffic injection, LayeR-wise backPropagation (LRP) is suitable to identify BSs sensitive to high traffic injection. Under moderate adversarial attacks, the prediction error of the BSs identified as vulnerable can increase by more than 250%.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 6","pages":"5245-5263"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeExp: Revealing Model Vulnerabilities for Spatio-Temporal Mobile Traffic Forecasting With Explainable AI\",\"authors\":\"Serly Moghadas Gholian;Claudio Fiandrino;Narseo Vallina-Rodríguez;Marco Fiore;Joerg Widmer\",\"doi\":\"10.1109/TMC.2025.3531544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to perform mobile traffic forecasting effectively with Deep Neural Networks (DNN) is instrumental to optimize resource management in 5G and beyond generation mobile networks. However, despite their capabilities, these Deep Neural Networks (DNN)s often act as complex opaque-boxes with decisions that are difficult to interpret. Even worse, they have proven vulnerable to adversarial attacks which undermine their applicability in production networks. Unfortunately, although existing state-of-the-art EXplainable Artificial Intelligence (XAI) techniques are often demonstrated in computer vision and Natural Language Processing (NLP), they may not fully address the unique challenges posed by spatio-temporal time-series forecasting models. To address these challenges, we introduce <sc>DeExp</small> in this paper, a tool that flexibly builds upon legacy EXplainable Artificial Intelligence (XAI) techniques to synthesize compact explanations by making it possible to understand which Base Stations (BSs) are more influential for forecasting from a spatio-temporal perspective. Armed with such knowledge, we run state-of-the-art Adversarial Machine Learning (AML) techniques on those BSs to measure the accuracy degradation of the predictors under adversarial attacks. Our comprehensive evaluation uses real-world mobile traffic datasets and demonstrates that legacy XAI techniques spot different types of vulnerabilities. While Gradient-weighted Class Activation Mapping (GC) is suitable to spot BSs sensitive to moderate/low traffic injection, LayeR-wise backPropagation (LRP) is suitable to identify BSs sensitive to high traffic injection. Under moderate adversarial attacks, the prediction error of the BSs identified as vulnerable can increase by more than 250%.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 6\",\"pages\":\"5245-5263\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10847884/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10847884/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DeExp: Revealing Model Vulnerabilities for Spatio-Temporal Mobile Traffic Forecasting With Explainable AI
The ability to perform mobile traffic forecasting effectively with Deep Neural Networks (DNN) is instrumental to optimize resource management in 5G and beyond generation mobile networks. However, despite their capabilities, these Deep Neural Networks (DNN)s often act as complex opaque-boxes with decisions that are difficult to interpret. Even worse, they have proven vulnerable to adversarial attacks which undermine their applicability in production networks. Unfortunately, although existing state-of-the-art EXplainable Artificial Intelligence (XAI) techniques are often demonstrated in computer vision and Natural Language Processing (NLP), they may not fully address the unique challenges posed by spatio-temporal time-series forecasting models. To address these challenges, we introduce DeExp in this paper, a tool that flexibly builds upon legacy EXplainable Artificial Intelligence (XAI) techniques to synthesize compact explanations by making it possible to understand which Base Stations (BSs) are more influential for forecasting from a spatio-temporal perspective. Armed with such knowledge, we run state-of-the-art Adversarial Machine Learning (AML) techniques on those BSs to measure the accuracy degradation of the predictors under adversarial attacks. Our comprehensive evaluation uses real-world mobile traffic datasets and demonstrates that legacy XAI techniques spot different types of vulnerabilities. While Gradient-weighted Class Activation Mapping (GC) is suitable to spot BSs sensitive to moderate/low traffic injection, LayeR-wise backPropagation (LRP) is suitable to identify BSs sensitive to high traffic injection. Under moderate adversarial attacks, the prediction error of the BSs identified as vulnerable can increase by more than 250%.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.