斜长石中氧逸度与铁氧化态关系的定标

IF 3.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
W.L. Ofierska , P.A. Sossi , C. Liebske , D.F. Sanchez , D. Grolimund , M.W. Schmidt
{"title":"斜长石中氧逸度与铁氧化态关系的定标","authors":"W.L. Ofierska ,&nbsp;P.A. Sossi ,&nbsp;C. Liebske ,&nbsp;D.F. Sanchez ,&nbsp;D. Grolimund ,&nbsp;M.W. Schmidt","doi":"10.1016/j.chemgeo.2025.122814","DOIUrl":null,"url":null,"abstract":"<div><div>Plagioclase, one of the major minerals comprising igneous rocks in the Earth's crust and those of other rocky planetary bodies, incorporates minor quantities of iron in its structure. While ferric iron is known to preferentially partition into plagioclase over its ferrous counterpart, there have been few efforts to characterise its oxidation state directly. To do so, we collected X-ray Absorption Near-Edge Structure (XANES) spectra at the Fe K-edge for a series of quenched anorthite-melt pairs synthesised in the CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-FeO* (CMAS+Fe) system over a range of oxygen fugacities from two log<sub>10</sub>-units below the iron-wüstite (IW) buffer; ΔIW-2, to air (ΔIW + 12) at 1140 °C and 1 bar, with an additional experiment up to ΔIW + 16.7 at 1200 °C and 1 GPa. We show that the range of area mean-weighted centroid energies and integrated intensities of the pre-edge feature in glass and anorthite overlap, permitting Fe<sup>3+</sup>/∑Fe ratios for both phases to be determined using existing calibrations for glasses. The equilibrium constant for the reaction FeO + 1/4O<sub>2</sub> = FeO<sub>1.5</sub> in plagioclase determined by XANES is found to be log<em>K</em><sup>plg</sup> = 1.60 ± 0.09 with a stoichiometric coefficient for oxygen, <em>n</em> = 0.25 ± 0.01, indistinguishable from the ideal value, independent of plagioclase orientation. This permits the <em>f</em>O<sub>2</sub> under which anorthite crystallised to be determined from its Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio alone, by the equation <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> = (<em>K</em><sup>plg</sup>/[Fe<sup>3+</sup>/Fe<sup>2+</sup>]<sub>plg</sub>)<sup>(−1/<em>n</em>)</sup>. Fits to partition coefficients between coexisting melt and anorthite as a function of <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> yield <span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></msubsup></math></span> (0.055 ± 0.005) and <span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>3</mn><mo>+</mo></mrow></msup></msubsup></math></span> (0.43 ± 0.04), which, together with log<em>K</em><sup>melt</sup> (0.78 ± 0.03), lead to a second oxybarometer that can be applied to plagioclase-melt pairs, <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> = ([Fe<sup>3+</sup>/Fe<sup>2+</sup>]<sub>plg</sub>/([<span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>3</mn><mo>+</mo></mrow></msup></msubsup></math></span>/<span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></msubsup></math></span>]<em>K</em><sup>melt</sup>))<sup>1/<em>n</em></sup>. For a typical precision of ±0.02 on Fe<sup>3+</sup>/∑Fe in anorthite, both calibrations yield an <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> indistinguishable to one another within uncertainty, which is ±0.40 and ± 0.25 log units at 1140 °C and 1 bar for the plagioclase-only- and plagioclase-melt oxybarometer, respectively. Use of the first oxybarometer opens the possibility of modelling oxygen fugacity in magmatic systems where the melt composition is unknown (e.g. anorthositic cumulates).</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"686 ","pages":"Article 122814"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of the relationship between oxygen fugacity and the oxidation state of iron in anorthitic plagioclase\",\"authors\":\"W.L. Ofierska ,&nbsp;P.A. Sossi ,&nbsp;C. Liebske ,&nbsp;D.F. Sanchez ,&nbsp;D. Grolimund ,&nbsp;M.W. Schmidt\",\"doi\":\"10.1016/j.chemgeo.2025.122814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plagioclase, one of the major minerals comprising igneous rocks in the Earth's crust and those of other rocky planetary bodies, incorporates minor quantities of iron in its structure. While ferric iron is known to preferentially partition into plagioclase over its ferrous counterpart, there have been few efforts to characterise its oxidation state directly. To do so, we collected X-ray Absorption Near-Edge Structure (XANES) spectra at the Fe K-edge for a series of quenched anorthite-melt pairs synthesised in the CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-FeO* (CMAS+Fe) system over a range of oxygen fugacities from two log<sub>10</sub>-units below the iron-wüstite (IW) buffer; ΔIW-2, to air (ΔIW + 12) at 1140 °C and 1 bar, with an additional experiment up to ΔIW + 16.7 at 1200 °C and 1 GPa. We show that the range of area mean-weighted centroid energies and integrated intensities of the pre-edge feature in glass and anorthite overlap, permitting Fe<sup>3+</sup>/∑Fe ratios for both phases to be determined using existing calibrations for glasses. The equilibrium constant for the reaction FeO + 1/4O<sub>2</sub> = FeO<sub>1.5</sub> in plagioclase determined by XANES is found to be log<em>K</em><sup>plg</sup> = 1.60 ± 0.09 with a stoichiometric coefficient for oxygen, <em>n</em> = 0.25 ± 0.01, indistinguishable from the ideal value, independent of plagioclase orientation. This permits the <em>f</em>O<sub>2</sub> under which anorthite crystallised to be determined from its Fe<sup>3+</sup>/Fe<sup>2+</sup> ratio alone, by the equation <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> = (<em>K</em><sup>plg</sup>/[Fe<sup>3+</sup>/Fe<sup>2+</sup>]<sub>plg</sub>)<sup>(−1/<em>n</em>)</sup>. Fits to partition coefficients between coexisting melt and anorthite as a function of <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> yield <span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></msubsup></math></span> (0.055 ± 0.005) and <span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>3</mn><mo>+</mo></mrow></msup></msubsup></math></span> (0.43 ± 0.04), which, together with log<em>K</em><sup>melt</sup> (0.78 ± 0.03), lead to a second oxybarometer that can be applied to plagioclase-melt pairs, <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> = ([Fe<sup>3+</sup>/Fe<sup>2+</sup>]<sub>plg</sub>/([<span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>3</mn><mo>+</mo></mrow></msup></msubsup></math></span>/<span><math><msubsup><mi>D</mi><mrow><mi>plg</mi><mo>/</mo><mi>melt</mi></mrow><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></msubsup></math></span>]<em>K</em><sup>melt</sup>))<sup>1/<em>n</em></sup>. For a typical precision of ±0.02 on Fe<sup>3+</sup>/∑Fe in anorthite, both calibrations yield an <span><math><msub><mi>f</mi><msub><mi>o</mi><mn>2</mn></msub></msub></math></span> indistinguishable to one another within uncertainty, which is ±0.40 and ± 0.25 log units at 1140 °C and 1 bar for the plagioclase-only- and plagioclase-melt oxybarometer, respectively. Use of the first oxybarometer opens the possibility of modelling oxygen fugacity in magmatic systems where the melt composition is unknown (e.g. anorthositic cumulates).</div></div>\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"686 \",\"pages\":\"Article 122814\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009254125002049\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254125002049","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

斜长石是构成地壳和其他岩石行星中火成岩的主要矿物之一,在其结构中含有少量的铁。虽然已知铁比铁更容易分解成斜长石,但很少有人能直接表征其氧化状态。为此,我们收集了一系列在CaO-MgO-Al2O3-SiO2-FeO* (CMAS+Fe)体系中合成的淬火钙长石熔体对在铁- wstite (IW)缓冲液下两个log10单位的氧逸度范围内的Fe - k边缘的x射线吸收近边缘结构(XANES)光谱;ΔIW-2,到空气(ΔIW + 12)在1140°C和1 bar,与一个额外的实验高达ΔIW + 16.7在1200°C和1 GPa。我们发现,玻璃和钙长石的面积平均加权质心能量范围和前边缘特征的综合强度重叠,允许使用现有的玻璃校准来确定两相的Fe3+/∑Fe比。XANES测定斜长石中FeO + 1/4O2 = FeO1.5反应的平衡常数为logKplg = 1.60±0.09,氧的化学计量系数为n = 0.25±0.01,与斜长石取向无关,与理想值相差不大。这使得钙长石结晶的fO2可以通过其Fe3+/Fe2+的比值来确定,公式为:fO2 = (Kplg/[Fe3+/Fe2+]plg)(−1/n)。对共存熔体和钙长石之间的分配系数Dplg/meltFe2+(0.055±0.005)和Dplg/meltFe3+(0.43±0.04)进行拟合,再加上logKmelt(0.78±0.03),得到了可应用于斜长石-熔体对的第二个氧气晴雨表fo2 = ([Fe3+/Fe2+]plg/([Dplg/meltFe3+/Dplg/meltFe2+]Kmelt))1/n。对于钙长石中Fe3+/∑Fe的典型精度为±0.02,两种校准在不确定度范围内产生难以区分的fo2,在1140°C和1 bar下,仅斜长石和斜长石熔体氧气气压计分别为±0.40和±0.25对数单位。第一个氧气压表的使用开启了在熔融成分未知的岩浆系统(如斜长岩堆积)中模拟氧逸度的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of the relationship between oxygen fugacity and the oxidation state of iron in anorthitic plagioclase
Plagioclase, one of the major minerals comprising igneous rocks in the Earth's crust and those of other rocky planetary bodies, incorporates minor quantities of iron in its structure. While ferric iron is known to preferentially partition into plagioclase over its ferrous counterpart, there have been few efforts to characterise its oxidation state directly. To do so, we collected X-ray Absorption Near-Edge Structure (XANES) spectra at the Fe K-edge for a series of quenched anorthite-melt pairs synthesised in the CaO-MgO-Al2O3-SiO2-FeO* (CMAS+Fe) system over a range of oxygen fugacities from two log10-units below the iron-wüstite (IW) buffer; ΔIW-2, to air (ΔIW + 12) at 1140 °C and 1 bar, with an additional experiment up to ΔIW + 16.7 at 1200 °C and 1 GPa. We show that the range of area mean-weighted centroid energies and integrated intensities of the pre-edge feature in glass and anorthite overlap, permitting Fe3+/∑Fe ratios for both phases to be determined using existing calibrations for glasses. The equilibrium constant for the reaction FeO + 1/4O2 = FeO1.5 in plagioclase determined by XANES is found to be logKplg = 1.60 ± 0.09 with a stoichiometric coefficient for oxygen, n = 0.25 ± 0.01, indistinguishable from the ideal value, independent of plagioclase orientation. This permits the fO2 under which anorthite crystallised to be determined from its Fe3+/Fe2+ ratio alone, by the equation fo2 = (Kplg/[Fe3+/Fe2+]plg)(−1/n). Fits to partition coefficients between coexisting melt and anorthite as a function of fo2 yield Dplg/meltFe2+ (0.055 ± 0.005) and Dplg/meltFe3+ (0.43 ± 0.04), which, together with logKmelt (0.78 ± 0.03), lead to a second oxybarometer that can be applied to plagioclase-melt pairs, fo2 = ([Fe3+/Fe2+]plg/([Dplg/meltFe3+/Dplg/meltFe2+]Kmelt))1/n. For a typical precision of ±0.02 on Fe3+/∑Fe in anorthite, both calibrations yield an fo2 indistinguishable to one another within uncertainty, which is ±0.40 and ± 0.25 log units at 1140 °C and 1 bar for the plagioclase-only- and plagioclase-melt oxybarometer, respectively. Use of the first oxybarometer opens the possibility of modelling oxygen fugacity in magmatic systems where the melt composition is unknown (e.g. anorthositic cumulates).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Geology
Chemical Geology 地学-地球化学与地球物理
CiteScore
7.20
自引率
10.30%
发文量
374
审稿时长
3.6 months
期刊介绍: Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry. The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry. Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry. The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信