新型冠状病毒感染糖尿病患者疾病严重程度模型研究

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ashabul Hoque , Razia Sultana , Hamidul Islam , Abdul Malek
{"title":"新型冠状病毒感染糖尿病患者疾病严重程度模型研究","authors":"Ashabul Hoque ,&nbsp;Razia Sultana ,&nbsp;Hamidul Islam ,&nbsp;Abdul Malek","doi":"10.1016/j.matcom.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce a novel SEICHR compartmental model to explore the transmission dynamics of COVID-19 among diabetic and non-diabetic patients, with a particular focus on the impact of COVID-19-induced diabetes on disease progression. The well-posedness of the model and the stability of the equilibrium points are confirmed through rigorous mathematical analysis. Mathematical results are validated using numerical simulations. Sensitivity and bifurcation analyses are conducted to determine the most sensitive parameters in the proposed model. The sensitivity of the model parameters is examined using the partial rank correlation coefficients (PRCC) analysis. The results show that the disease progression rate is higher among COVID-19 infected diabetic patients than non-diabetic patients. Numerical simulations further indicate that the forward bifurcation region expands progressively with increasing rates of disease development. The role of COVID-19-induced diabetic patients in exacerbating disease severity is examined through both constant and progressive delays in hospital isolation. Notably, the progressive waiting time exerts a significantly greater impact on transmission dynamics than the constant waiting time.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"237 ","pages":"Pages 213-230"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modeling investigation of the disease severity driven by COVID-19-induced diabetic patients\",\"authors\":\"Ashabul Hoque ,&nbsp;Razia Sultana ,&nbsp;Hamidul Islam ,&nbsp;Abdul Malek\",\"doi\":\"10.1016/j.matcom.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we introduce a novel SEICHR compartmental model to explore the transmission dynamics of COVID-19 among diabetic and non-diabetic patients, with a particular focus on the impact of COVID-19-induced diabetes on disease progression. The well-posedness of the model and the stability of the equilibrium points are confirmed through rigorous mathematical analysis. Mathematical results are validated using numerical simulations. Sensitivity and bifurcation analyses are conducted to determine the most sensitive parameters in the proposed model. The sensitivity of the model parameters is examined using the partial rank correlation coefficients (PRCC) analysis. The results show that the disease progression rate is higher among COVID-19 infected diabetic patients than non-diabetic patients. Numerical simulations further indicate that the forward bifurcation region expands progressively with increasing rates of disease development. The role of COVID-19-induced diabetic patients in exacerbating disease severity is examined through both constant and progressive delays in hospital isolation. Notably, the progressive waiting time exerts a significantly greater impact on transmission dynamics than the constant waiting time.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"237 \",\"pages\":\"Pages 213-230\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425001417\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001417","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了一种新的SEICHR区室模型来探索COVID-19在糖尿病和非糖尿病患者中的传播动力学,特别关注COVID-19诱导的糖尿病对疾病进展的影响。通过严密的数学分析,证实了模型的适定性和平衡点的稳定性。通过数值模拟验证了数学结果。通过灵敏度分析和分岔分析,确定了模型中最敏感的参数。利用偏秩相关系数(PRCC)分析检验了模型参数的敏感性。结果显示,新冠肺炎感染的糖尿病患者的疾病进展率高于非糖尿病患者。数值模拟进一步表明,前分岔区随着疾病发展速度的增加而逐渐扩大。通过持续和渐进的医院隔离延迟来检查covid -19诱导的糖尿病患者在加重疾病严重程度中的作用。值得注意的是,累进等待时间对传输动力学的影响明显大于恒定等待时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modeling investigation of the disease severity driven by COVID-19-induced diabetic patients
In this study, we introduce a novel SEICHR compartmental model to explore the transmission dynamics of COVID-19 among diabetic and non-diabetic patients, with a particular focus on the impact of COVID-19-induced diabetes on disease progression. The well-posedness of the model and the stability of the equilibrium points are confirmed through rigorous mathematical analysis. Mathematical results are validated using numerical simulations. Sensitivity and bifurcation analyses are conducted to determine the most sensitive parameters in the proposed model. The sensitivity of the model parameters is examined using the partial rank correlation coefficients (PRCC) analysis. The results show that the disease progression rate is higher among COVID-19 infected diabetic patients than non-diabetic patients. Numerical simulations further indicate that the forward bifurcation region expands progressively with increasing rates of disease development. The role of COVID-19-induced diabetic patients in exacerbating disease severity is examined through both constant and progressive delays in hospital isolation. Notably, the progressive waiting time exerts a significantly greater impact on transmission dynamics than the constant waiting time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信