一种深度学习物理信息神经网络(PINN),用于预测钻井轴向容量

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M.E. Al-Atroush
{"title":"一种深度学习物理信息神经网络(PINN),用于预测钻井轴向容量","authors":"M.E. Al-Atroush","doi":"10.1016/j.acags.2025.100246","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately estimating the axial capacity of drilled shafts remains a persistent challenge in geotechnical engineering, as evidenced by significant discrepancies between measured load-test results and theoretical predictions. To bridge this gap, a novel Deep Learning–Physics-Informed Neural Network (DL-PINN) framework is proposed. Employing Meyerhof's bearing capacity equations as a physics-based constraint, the developed PINN integrated soil and geometric parameters directly into its training loss function. By combining these first-principles relationships with empirical data, the model preserved fundamental geotechnical mechanisms while refining predictive accuracy through dynamic weight adjustments between data-driven and physics-based loss components. Comparative experiments with a standard artificial neural network (ANN), using a dataset derived from the loaded-to-failure in-situ pile test and subsequent numerical simulations, demonstrated that although the ANN may attain lower statistical errors, the PINN's adherence to physical laws yields predictions that better align with established geotechnical behavior. This balance between physics fidelity and data adaptability may nominate these PINN frameworks to address the “black box” nature of deep learning in geotechnical applications. The paper also suggested the future research needs to fulfill the scientific and practical gap.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"26 ","pages":"Article 100246"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning physics-informed neural network (PINN) for predicting drilled shaft axial capacity\",\"authors\":\"M.E. Al-Atroush\",\"doi\":\"10.1016/j.acags.2025.100246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately estimating the axial capacity of drilled shafts remains a persistent challenge in geotechnical engineering, as evidenced by significant discrepancies between measured load-test results and theoretical predictions. To bridge this gap, a novel Deep Learning–Physics-Informed Neural Network (DL-PINN) framework is proposed. Employing Meyerhof's bearing capacity equations as a physics-based constraint, the developed PINN integrated soil and geometric parameters directly into its training loss function. By combining these first-principles relationships with empirical data, the model preserved fundamental geotechnical mechanisms while refining predictive accuracy through dynamic weight adjustments between data-driven and physics-based loss components. Comparative experiments with a standard artificial neural network (ANN), using a dataset derived from the loaded-to-failure in-situ pile test and subsequent numerical simulations, demonstrated that although the ANN may attain lower statistical errors, the PINN's adherence to physical laws yields predictions that better align with established geotechnical behavior. This balance between physics fidelity and data adaptability may nominate these PINN frameworks to address the “black box” nature of deep learning in geotechnical applications. The paper also suggested the future research needs to fulfill the scientific and practical gap.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"26 \",\"pages\":\"Article 100246\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259019742500028X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019742500028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在岩土工程中,准确估计钻井竖井的轴向承载力一直是一个挑战,实测载荷测试结果与理论预测之间存在显著差异。为了弥补这一差距,提出了一种新的深度学习-物理-知情神经网络(DL-PINN)框架。采用Meyerhof承载力方程作为物理约束,将土壤和几何参数直接集成到其训练损失函数中。通过将这些第一性原理关系与经验数据相结合,该模型保留了基本的岩土力学机制,同时通过数据驱动和基于物理的损失分量之间的动态权重调整来提高预测精度。与标准人工神经网络(ANN)的对比实验,使用从加载到破坏的原位桩试验和随后的数值模拟中获得的数据集,表明尽管ANN可能获得更低的统计误差,但PINN对物理定律的遵守产生的预测更符合已建立的岩土力学行为。这种物理保真度和数据适应性之间的平衡可能会提名这些PINN框架来解决岩土工程应用中深度学习的“黑盒子”性质。本文还提出了未来的研究需要填补科学与实践的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning physics-informed neural network (PINN) for predicting drilled shaft axial capacity
Accurately estimating the axial capacity of drilled shafts remains a persistent challenge in geotechnical engineering, as evidenced by significant discrepancies between measured load-test results and theoretical predictions. To bridge this gap, a novel Deep Learning–Physics-Informed Neural Network (DL-PINN) framework is proposed. Employing Meyerhof's bearing capacity equations as a physics-based constraint, the developed PINN integrated soil and geometric parameters directly into its training loss function. By combining these first-principles relationships with empirical data, the model preserved fundamental geotechnical mechanisms while refining predictive accuracy through dynamic weight adjustments between data-driven and physics-based loss components. Comparative experiments with a standard artificial neural network (ANN), using a dataset derived from the loaded-to-failure in-situ pile test and subsequent numerical simulations, demonstrated that although the ANN may attain lower statistical errors, the PINN's adherence to physical laws yields predictions that better align with established geotechnical behavior. This balance between physics fidelity and data adaptability may nominate these PINN frameworks to address the “black box” nature of deep learning in geotechnical applications. The paper also suggested the future research needs to fulfill the scientific and practical gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信