化学过程控制的随机决策转换器

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Junseop Shin, Joonsoo Park, Jaehyun Shim, Jong Min Lee
{"title":"化学过程控制的随机决策转换器","authors":"Junseop Shin,&nbsp;Joonsoo Park,&nbsp;Jaehyun Shim,&nbsp;Jong Min Lee","doi":"10.1016/j.compchemeng.2025.109155","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of industries has complicated process modeling, as conventional model-based control methods struggle with models that inadequately capture system complexities and impose significant computational burdens on their use. Reinforcement learning (RL), which leverages practical operational data instead of explicit models, often adapts better to these complexities. However, RL’s need for extensive online exploration poses potential risks in sensitive environments like chemical processes. To address this, we propose an offline RL approach based on the Decision Transformer (DT) architecture, named ChemDT. ChemDT incorporates stochastic policies with maximum entropy regularization, broadening policy coverage under limited offline data. To mitigate DT’s vulnerability to stochastic environments, we introduce a monitoring variable, <span><math><mi>λ</mi></math></span>, enabling selective responses to significant stochastic events amidst pervasive disturbances. Validated on a Continuous Stirred Tank Reactor (CSTR) and an industrial-scale fed-batch reactor, our approach demonstrates superior control performance compared to other offline RL algorithms.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109155"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChemDT: A stochastic decision transformer for chemical process control\",\"authors\":\"Junseop Shin,&nbsp;Joonsoo Park,&nbsp;Jaehyun Shim,&nbsp;Jong Min Lee\",\"doi\":\"10.1016/j.compchemeng.2025.109155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid advancement of industries has complicated process modeling, as conventional model-based control methods struggle with models that inadequately capture system complexities and impose significant computational burdens on their use. Reinforcement learning (RL), which leverages practical operational data instead of explicit models, often adapts better to these complexities. However, RL’s need for extensive online exploration poses potential risks in sensitive environments like chemical processes. To address this, we propose an offline RL approach based on the Decision Transformer (DT) architecture, named ChemDT. ChemDT incorporates stochastic policies with maximum entropy regularization, broadening policy coverage under limited offline data. To mitigate DT’s vulnerability to stochastic environments, we introduce a monitoring variable, <span><math><mi>λ</mi></math></span>, enabling selective responses to significant stochastic events amidst pervasive disturbances. Validated on a Continuous Stirred Tank Reactor (CSTR) and an industrial-scale fed-batch reactor, our approach demonstrates superior control performance compared to other offline RL algorithms.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"199 \",\"pages\":\"Article 109155\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001590\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

工业的快速发展使过程建模变得复杂,因为传统的基于模型的控制方法与不能充分捕获系统复杂性的模型作斗争,并且给它们的使用带来了巨大的计算负担。强化学习(RL)利用实际操作数据而不是明确的模型,通常能更好地适应这些复杂性。然而,RL对广泛在线勘探的需求在化学过程等敏感环境中带来了潜在风险。为了解决这个问题,我们提出了一种基于决策转换器(DT)架构的离线RL方法,名为ChemDT。ChemDT结合了最大熵正则化的随机策略,在有限的离线数据下扩大了策略覆盖范围。为了减轻DT对随机环境的脆弱性,我们引入了一个监测变量λ,使其能够在普遍干扰中对重大随机事件做出选择性响应。在连续搅拌槽式反应器(CSTR)和工业规模进料批式反应器上进行了验证,与其他离线RL算法相比,我们的方法显示出优越的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChemDT: A stochastic decision transformer for chemical process control
The rapid advancement of industries has complicated process modeling, as conventional model-based control methods struggle with models that inadequately capture system complexities and impose significant computational burdens on their use. Reinforcement learning (RL), which leverages practical operational data instead of explicit models, often adapts better to these complexities. However, RL’s need for extensive online exploration poses potential risks in sensitive environments like chemical processes. To address this, we propose an offline RL approach based on the Decision Transformer (DT) architecture, named ChemDT. ChemDT incorporates stochastic policies with maximum entropy regularization, broadening policy coverage under limited offline data. To mitigate DT’s vulnerability to stochastic environments, we introduce a monitoring variable, λ, enabling selective responses to significant stochastic events amidst pervasive disturbances. Validated on a Continuous Stirred Tank Reactor (CSTR) and an industrial-scale fed-batch reactor, our approach demonstrates superior control performance compared to other offline RL algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信