{"title":"昆虫基因调控网络的进化","authors":"Takumi Karasawa , Shigeyuki Koshikawa","doi":"10.1016/j.cois.2025.101365","DOIUrl":null,"url":null,"abstract":"<div><div>Changes in gene regulatory networks (GRNs) underlying the evolution of traits have been intensively studied, with insects providing excellent model cases. In studies using <em>Drosophila</em>, butterflies, and other insects, several well-known cases have shown that changes in the <em>cis</em>-regulatory region of a gene controlling a trait can result in the co-option of the gene for a role different from that in its original developmental context. When the expression of a regulatory gene that controls the expression of multiple downstream genes is altered, the expression of these downstream genes changes accordingly, representing the simplest form of GRN co-option. Many studies have explored the applicability of this model to the acquisition of new traits, yielding substantial insights. However, no study has yet comprehensively elucidated the co-option of a GRN or the evolution of a network architecture, including associated genes and their regulatory relationships. In the near future, the use of single-cell multiomics and machine learning will allow for larger-scale data analysis, leading to a better understanding of the evolution of traits through the evolution of GRNs.</div></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"69 ","pages":"Article 101365"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of gene regulatory networks in insects\",\"authors\":\"Takumi Karasawa , Shigeyuki Koshikawa\",\"doi\":\"10.1016/j.cois.2025.101365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Changes in gene regulatory networks (GRNs) underlying the evolution of traits have been intensively studied, with insects providing excellent model cases. In studies using <em>Drosophila</em>, butterflies, and other insects, several well-known cases have shown that changes in the <em>cis</em>-regulatory region of a gene controlling a trait can result in the co-option of the gene for a role different from that in its original developmental context. When the expression of a regulatory gene that controls the expression of multiple downstream genes is altered, the expression of these downstream genes changes accordingly, representing the simplest form of GRN co-option. Many studies have explored the applicability of this model to the acquisition of new traits, yielding substantial insights. However, no study has yet comprehensively elucidated the co-option of a GRN or the evolution of a network architecture, including associated genes and their regulatory relationships. In the near future, the use of single-cell multiomics and machine learning will allow for larger-scale data analysis, leading to a better understanding of the evolution of traits through the evolution of GRNs.</div></div>\",\"PeriodicalId\":11038,\"journal\":{\"name\":\"Current opinion in insect science\",\"volume\":\"69 \",\"pages\":\"Article 101365\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in insect science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214574525000355\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574525000355","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Changes in gene regulatory networks (GRNs) underlying the evolution of traits have been intensively studied, with insects providing excellent model cases. In studies using Drosophila, butterflies, and other insects, several well-known cases have shown that changes in the cis-regulatory region of a gene controlling a trait can result in the co-option of the gene for a role different from that in its original developmental context. When the expression of a regulatory gene that controls the expression of multiple downstream genes is altered, the expression of these downstream genes changes accordingly, representing the simplest form of GRN co-option. Many studies have explored the applicability of this model to the acquisition of new traits, yielding substantial insights. However, no study has yet comprehensively elucidated the co-option of a GRN or the evolution of a network architecture, including associated genes and their regulatory relationships. In the near future, the use of single-cell multiomics and machine learning will allow for larger-scale data analysis, leading to a better understanding of the evolution of traits through the evolution of GRNs.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.