Jaesung Yoo , Sunghyuk Choi , Ye Seul Yang , Suhyeon Kim , Jieun Choi , Dongkyeong Lim , Yaeji Lim , Hyung Joon Joo , Dae Jung Kim , Rae Woong Park , Hyung-Jin Yoon , Kwangsoo Kim
{"title":"回顾学习:在医疗机构中保护隐私的持续学习的真实世界验证","authors":"Jaesung Yoo , Sunghyuk Choi , Ye Seul Yang , Suhyeon Kim , Jieun Choi , Dongkyeong Lim , Yaeji Lim , Hyung Joon Joo , Dae Jung Kim , Rae Woong Park , Hyung-Jin Yoon , Kwangsoo Kim","doi":"10.1016/j.compbiomed.2025.110239","DOIUrl":null,"url":null,"abstract":"<div><div>When a deep learning model is trained sequentially on different datasets, it often forgets the knowledge learned from previous data, a problem known as catastrophic forgetting. This damages the model’s performance on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we introduce “review learning” (RevL), a low cost continual learning algorithm for diagnosis prediction using electronic health records (EHR) within a PPDL framework. RevL generates data samples from the model which are used to review knowledge from previous datasets. Six simulated institutional experiments and one real-world experiment involving three medical institutions were conducted to validate RevL, using three binary classification EHR data. In the real-world experiment with data from 106,508 patients, the mean global area under the receiver operating curve was 0.710 for RevL and 0.655 for TL. These results demonstrate RevL’s ability to retain previously learned knowledge and its effectiveness in real-world PPDL scenarios. Our work establishes a realistic pipeline for PPDL research based on model transfers across institutions and highlights the practicality of continual learning in real-world medical settings using private EHR data.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110239"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review learning: Real world validation of privacy preserving continual learning across medical institutions\",\"authors\":\"Jaesung Yoo , Sunghyuk Choi , Ye Seul Yang , Suhyeon Kim , Jieun Choi , Dongkyeong Lim , Yaeji Lim , Hyung Joon Joo , Dae Jung Kim , Rae Woong Park , Hyung-Jin Yoon , Kwangsoo Kim\",\"doi\":\"10.1016/j.compbiomed.2025.110239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When a deep learning model is trained sequentially on different datasets, it often forgets the knowledge learned from previous data, a problem known as catastrophic forgetting. This damages the model’s performance on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we introduce “review learning” (RevL), a low cost continual learning algorithm for diagnosis prediction using electronic health records (EHR) within a PPDL framework. RevL generates data samples from the model which are used to review knowledge from previous datasets. Six simulated institutional experiments and one real-world experiment involving three medical institutions were conducted to validate RevL, using three binary classification EHR data. In the real-world experiment with data from 106,508 patients, the mean global area under the receiver operating curve was 0.710 for RevL and 0.655 for TL. These results demonstrate RevL’s ability to retain previously learned knowledge and its effectiveness in real-world PPDL scenarios. Our work establishes a realistic pipeline for PPDL research based on model transfers across institutions and highlights the practicality of continual learning in real-world medical settings using private EHR data.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"192 \",\"pages\":\"Article 110239\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005906\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005906","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Review learning: Real world validation of privacy preserving continual learning across medical institutions
When a deep learning model is trained sequentially on different datasets, it often forgets the knowledge learned from previous data, a problem known as catastrophic forgetting. This damages the model’s performance on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we introduce “review learning” (RevL), a low cost continual learning algorithm for diagnosis prediction using electronic health records (EHR) within a PPDL framework. RevL generates data samples from the model which are used to review knowledge from previous datasets. Six simulated institutional experiments and one real-world experiment involving three medical institutions were conducted to validate RevL, using three binary classification EHR data. In the real-world experiment with data from 106,508 patients, the mean global area under the receiver operating curve was 0.710 for RevL and 0.655 for TL. These results demonstrate RevL’s ability to retain previously learned knowledge and its effectiveness in real-world PPDL scenarios. Our work establishes a realistic pipeline for PPDL research based on model transfers across institutions and highlights the practicality of continual learning in real-world medical settings using private EHR data.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.