随机输入椭圆偏微分方程的预积分和拟蒙特卡罗估计

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Alexander D. Gilbert, Frances Y. Kuo, Abirami Srikumar
{"title":"随机输入椭圆偏微分方程的预积分和拟蒙特卡罗估计","authors":"Alexander D. Gilbert, Frances Y. Kuo, Abirami Srikumar","doi":"10.1137/24m1640070","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1025-1054, June 2025. <br/> Abstract. In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an [math]-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order [math] for arbitrarily small [math]. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"48 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Estimation for Elliptic PDE with Random Input by Preintegration and Quasi-Monte Carlo Methods\",\"authors\":\"Alexander D. Gilbert, Frances Y. Kuo, Abirami Srikumar\",\"doi\":\"10.1137/24m1640070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1025-1054, June 2025. <br/> Abstract. In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an [math]-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order [math] for arbitrarily small [math]. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1640070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1640070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,63卷,第3期,1025-1054页,2025年6月。摘要。本文应用具有初始预积分步骤的准蒙特卡罗方法估计不确定性量化(UQ)中的累积分布函数和概率密度函数。分布和密度函数对应于涉及具有对数正态分布系数和正态分布源项的椭圆偏微分方程(PDE)的解的感兴趣的量。在使用QMC计算UQ中的期望值方面,以前有大量的工作,这些工作在解决一系列不同的PDE问题方面被证明是非常成功的。然而,将QMC用于密度估计应用于UQ问题将首次在这里进行探讨。与计算期望值相比,密度估计是一个更困难的挑战,因为分布和密度的积分公式都存在不连续。我们的策略是使用预积分,通过积分出一个精心选择的随机参数来消除不连续,这样QMC就可以用来近似剩余的积分。首先,我们建立了感兴趣的PDE量的正则性结果,这些结果是通过预积分进行平滑所必需的。然后,我们证明了对于与分布和密度相对应的被积可以构造一个[math]点格规则,使得预积分后的QMC误差对于任意小的[math]是[math]阶的。这与计算利息数量的期望值所获得的比率相同。数值结果证实了我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density Estimation for Elliptic PDE with Random Input by Preintegration and Quasi-Monte Carlo Methods
SIAM Journal on Numerical Analysis, Volume 63, Issue 3, Page 1025-1054, June 2025.
Abstract. In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an [math]-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order [math] for arbitrarily small [math]. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信