寻找量子零和博弈纳什均衡的二次加速

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-05-06 DOI:10.22331/q-2025-05-06-1737
Francisca Vasconcelos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, Georgios Piliouras, Michael I. Jordan
{"title":"寻找量子零和博弈纳什均衡的二次加速","authors":"Francisca Vasconcelos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, Georgios Piliouras, Michael I. Jordan","doi":"10.22331/q-2025-05-06-1737","DOIUrl":null,"url":null,"abstract":"Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of $\\mathcal{O}(d/\\epsilon^2)$ iterations to $\\epsilon$-Nash equilibria in the $4^d$-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $\\mathcal{O}(d/\\epsilon)$ iterations to $\\epsilon$-Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing $\\epsilon$-Nash equilibria in quantum zero-sum games.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"95 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games\",\"authors\":\"Francisca Vasconcelos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Panayotis Mertikopoulos, Georgios Piliouras, Michael I. Jordan\",\"doi\":\"10.22331/q-2025-05-06-1737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of $\\\\mathcal{O}(d/\\\\epsilon^2)$ iterations to $\\\\epsilon$-Nash equilibria in the $4^d$-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $\\\\mathcal{O}(d/\\\\epsilon)$ iterations to $\\\\epsilon$-Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing $\\\\epsilon$-Nash equilibria in quantum zero-sum games.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-05-06-1737\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-06-1737","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近在非局部博弈、量子交互证明和量子生成对抗网络等领域的发展重新燃起了人们对量子博弈论,特别是量子零和博弈的兴趣。经典博弈论的核心是纳什均衡的有效算法计算,它代表了博弈双方的最优策略。2008年,Jain和Watrous提出了量子零和博弈中计算均衡的第一个经典算法,使用矩阵乘法权值更新(MMWU)方法实现了$\mathcal{O}(d/\epsilon^2)$迭代到$\epsilon$-纳什均衡的收敛速度。在这项工作中,我们提出了一个层次的量子优化算法,通过一个额外的梯度机制推广MMWU。值得注意的是,在这个提出的层次结构中,我们引入了乐观矩阵乘法权重更新(OMMWU)算法,并将其平均迭代收敛复杂度建立为$\mathcal{O}(d/\epsilon)$迭代到$\epsilon$-纳什均衡。相对于Jain和Watrous的原始算法,这种二次加速为计算量子零和博弈中的$\epsilon$-Nash均衡设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games
Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of $\mathcal{O}(d/\epsilon^2)$ iterations to $\epsilon$-Nash equilibria in the $4^d$-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $\mathcal{O}(d/\epsilon)$ iterations to $\epsilon$-Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing $\epsilon$-Nash equilibria in quantum zero-sum games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信