{"title":"宇宙学与空洞","authors":"Benjamin C. Bromley and Margaret J. Geller","doi":"10.1088/1475-7516/2025/05/011","DOIUrl":null,"url":null,"abstract":"Voids are dominant features of the cosmic web. We revisit the cosmological information content of voids and connect void properties with the parameters of the background universe. We combine analytical results with a suite of large n-body realizations of large-scale structure in the quasilinear regime to measure the central density and radial outflow of voids. These properties, estimated from multiple voids that span a range of redshifts, provide estimates of the Hubble parameter, ΩM and ΩΛ. The analysis assumes access to the full phase-space distribution of mass within voids, a dataset that is not currently observable. The observable properties of the largest void in the universe may also test models. The suite of large n-body realizations enables construction of lightcones reaching ∼3,000 h-1Mpc. Based on these lightcones, we show that large voids similar to those observed are expected in the standard ΛCDM model.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"43 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmology with voids\",\"authors\":\"Benjamin C. Bromley and Margaret J. Geller\",\"doi\":\"10.1088/1475-7516/2025/05/011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voids are dominant features of the cosmic web. We revisit the cosmological information content of voids and connect void properties with the parameters of the background universe. We combine analytical results with a suite of large n-body realizations of large-scale structure in the quasilinear regime to measure the central density and radial outflow of voids. These properties, estimated from multiple voids that span a range of redshifts, provide estimates of the Hubble parameter, ΩM and ΩΛ. The analysis assumes access to the full phase-space distribution of mass within voids, a dataset that is not currently observable. The observable properties of the largest void in the universe may also test models. The suite of large n-body realizations enables construction of lightcones reaching ∼3,000 h-1Mpc. Based on these lightcones, we show that large voids similar to those observed are expected in the standard ΛCDM model.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/011\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Voids are dominant features of the cosmic web. We revisit the cosmological information content of voids and connect void properties with the parameters of the background universe. We combine analytical results with a suite of large n-body realizations of large-scale structure in the quasilinear regime to measure the central density and radial outflow of voids. These properties, estimated from multiple voids that span a range of redshifts, provide estimates of the Hubble parameter, ΩM and ΩΛ. The analysis assumes access to the full phase-space distribution of mass within voids, a dataset that is not currently observable. The observable properties of the largest void in the universe may also test models. The suite of large n-body realizations enables construction of lightcones reaching ∼3,000 h-1Mpc. Based on these lightcones, we show that large voids similar to those observed are expected in the standard ΛCDM model.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.