{"title":"磁噪声对样品形状的依赖性","authors":"Steven T. Bramwell","doi":"10.1103/physrevb.111.184409","DOIUrl":null,"url":null,"abstract":"Zero-field magnetic noise, characterized by the magnetic autocorrelation function S</a:mi>s</a:mi></a:msub>(</a:mo>t</a:mi>)</a:mo></a:mrow></a:mrow></a:math>, has been observed, perhaps surprisingly, to depend on sample shape <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mi>s</b:mi></b:math>. The reasons for this are identified and general expressions are derived that relate the autocorrelation functions for systems of different shape to an underlying “intrinsic” form. Assuming the fluctuation-dissipation theorem, it is shown that, for any noise that relaxes monotonically, the effect of sample shape is to reduce both the noise amplitude and mean relaxation time by a factor of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mn>1</c:mn><c:mo>+</c:mo><c:mi>N</c:mi><c:msub><c:mi>χ</c:mi><c:mi>i</c:mi></c:msub></c:mrow></c:math>, where <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mi>N</d:mi></d:math> is the demagnetizing factor and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:msub><e:mi>χ</e:mi><e:mi>i</e:mi></e:msub></e:math> the intrinsic susceptibility, but that only the exponential decay retains the same functional form for finite <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mi>N</f:mi></f:math>. In frequency space, where <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi>S</g:mi><g:mi>s</g:mi></g:msub><g:mrow><g:mo>(</g:mo><g:mi>t</g:mi><g:mo>)</g:mo></g:mrow></g:mrow></g:math> Fourier transforms into the power spectrum <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi>S</h:mi><h:mi>s</h:mi></h:msub><h:mrow><h:mo>(</h:mo><h:mi>ω</h:mi><h:mo>)</h:mo></h:mrow></h:mrow></h:math>, the above two factors combine to suppress the zero frequency amplitude of <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:mrow><i:msub><i:mi>S</i:mi><i:mi>s</i:mi></i:msub><i:mrow><i:mo>(</i:mo><i:mi>ω</i:mi><i:mo>)</i:mo></i:mrow></i:mrow></i:math> by <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msup><j:mrow><j:mo>(</j:mo><j:mn>1</j:mn><j:mo>+</j:mo><j:mi>N</j:mi><j:msub><j:mi>χ</j:mi><j:mi>i</j:mi></j:msub><j:mo>)</j:mo></j:mrow><j:mn>2</j:mn></j:msup></j:math>, while, at high frequency, sample shape dependence becomes negligible. These results are applied to various magnetic systems and experiments, including to tests of the fluctuation-dissipation and noise measurements in spin ice, to spin glasses, to surface magnetism, and to ferromagnetic critical behavior. They may be used to imply a general result that, for any near to equilibrium magnetic system with monotonic relaxation, the internal <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mi>B</k:mi></k:math> field will relax more slowly, and with larger amplitude, than the internal <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mi>H</l:mi></l:math> field, both by factors of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msub><m:mi>χ</m:mi><m:mi>i</m:mi></m:msub></m:mrow></m:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"25 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample-shape dependence of magnetic noise\",\"authors\":\"Steven T. Bramwell\",\"doi\":\"10.1103/physrevb.111.184409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-field magnetic noise, characterized by the magnetic autocorrelation function S</a:mi>s</a:mi></a:msub>(</a:mo>t</a:mi>)</a:mo></a:mrow></a:mrow></a:math>, has been observed, perhaps surprisingly, to depend on sample shape <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:mi>s</b:mi></b:math>. The reasons for this are identified and general expressions are derived that relate the autocorrelation functions for systems of different shape to an underlying “intrinsic” form. Assuming the fluctuation-dissipation theorem, it is shown that, for any noise that relaxes monotonically, the effect of sample shape is to reduce both the noise amplitude and mean relaxation time by a factor of <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\"><c:mrow><c:mn>1</c:mn><c:mo>+</c:mo><c:mi>N</c:mi><c:msub><c:mi>χ</c:mi><c:mi>i</c:mi></c:msub></c:mrow></c:math>, where <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\"><d:mi>N</d:mi></d:math> is the demagnetizing factor and <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\"><e:msub><e:mi>χ</e:mi><e:mi>i</e:mi></e:msub></e:math> the intrinsic susceptibility, but that only the exponential decay retains the same functional form for finite <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mi>N</f:mi></f:math>. In frequency space, where <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mrow><g:msub><g:mi>S</g:mi><g:mi>s</g:mi></g:msub><g:mrow><g:mo>(</g:mo><g:mi>t</g:mi><g:mo>)</g:mo></g:mrow></g:mrow></g:math> Fourier transforms into the power spectrum <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:msub><h:mi>S</h:mi><h:mi>s</h:mi></h:msub><h:mrow><h:mo>(</h:mo><h:mi>ω</h:mi><h:mo>)</h:mo></h:mrow></h:mrow></h:math>, the above two factors combine to suppress the zero frequency amplitude of <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\"><i:mrow><i:msub><i:mi>S</i:mi><i:mi>s</i:mi></i:msub><i:mrow><i:mo>(</i:mo><i:mi>ω</i:mi><i:mo>)</i:mo></i:mrow></i:mrow></i:math> by <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\"><j:msup><j:mrow><j:mo>(</j:mo><j:mn>1</j:mn><j:mo>+</j:mo><j:mi>N</j:mi><j:msub><j:mi>χ</j:mi><j:mi>i</j:mi></j:msub><j:mo>)</j:mo></j:mrow><j:mn>2</j:mn></j:msup></j:math>, while, at high frequency, sample shape dependence becomes negligible. These results are applied to various magnetic systems and experiments, including to tests of the fluctuation-dissipation and noise measurements in spin ice, to spin glasses, to surface magnetism, and to ferromagnetic critical behavior. They may be used to imply a general result that, for any near to equilibrium magnetic system with monotonic relaxation, the internal <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\"><k:mi>B</k:mi></k:math> field will relax more slowly, and with larger amplitude, than the internal <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\"><l:mi>H</l:mi></l:math> field, both by factors of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msub><m:mi>χ</m:mi><m:mi>i</m:mi></m:msub></m:mrow></m:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.184409\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.184409","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Zero-field magnetic noise, characterized by the magnetic autocorrelation function Ss(t), has been observed, perhaps surprisingly, to depend on sample shape s. The reasons for this are identified and general expressions are derived that relate the autocorrelation functions for systems of different shape to an underlying “intrinsic” form. Assuming the fluctuation-dissipation theorem, it is shown that, for any noise that relaxes monotonically, the effect of sample shape is to reduce both the noise amplitude and mean relaxation time by a factor of 1+Nχi, where N is the demagnetizing factor and χi the intrinsic susceptibility, but that only the exponential decay retains the same functional form for finite N. In frequency space, where Ss(t) Fourier transforms into the power spectrum Ss(ω), the above two factors combine to suppress the zero frequency amplitude of Ss(ω) by (1+Nχi)2, while, at high frequency, sample shape dependence becomes negligible. These results are applied to various magnetic systems and experiments, including to tests of the fluctuation-dissipation and noise measurements in spin ice, to spin glasses, to surface magnetism, and to ferromagnetic critical behavior. They may be used to imply a general result that, for any near to equilibrium magnetic system with monotonic relaxation, the internal B field will relax more slowly, and with larger amplitude, than the internal H field, both by factors of 1+χi. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter