{"title":"高原适应降低心肌梗死的新机制:抑制炎症诱导的BKCa泛素降解,增强冠状动脉舒张。","authors":"Sen Wang,Yu Zhang,Wei-Cheng Yuan,Can-Yang Qi,Hua-Xing Zhang,Tian-Qi Wang,Hui-Jie Liu,Hai-Shuang Li,Yan-Ming Tian,Sheng Wang,Sui-Bing Miao,Li-Ping Zhang,Hui Guo,Xiang-Jian Zhang,Yi Zhang,Huijie Ma,Yue Guan","doi":"10.1007/s00395-025-01113-0","DOIUrl":null,"url":null,"abstract":"Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"115 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new mechanism of high-altitude adaptation reducing myocardium infarction: inhibiting inflammation-induced ubiquitin degradation of BKCa to enhance coronary vasodilation.\",\"authors\":\"Sen Wang,Yu Zhang,Wei-Cheng Yuan,Can-Yang Qi,Hua-Xing Zhang,Tian-Qi Wang,Hui-Jie Liu,Hai-Shuang Li,Yan-Ming Tian,Sheng Wang,Sui-Bing Miao,Li-Ping Zhang,Hui Guo,Xiang-Jian Zhang,Yi Zhang,Huijie Ma,Yue Guan\",\"doi\":\"10.1007/s00395-025-01113-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-025-01113-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-025-01113-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
A new mechanism of high-altitude adaptation reducing myocardium infarction: inhibiting inflammation-induced ubiquitin degradation of BKCa to enhance coronary vasodilation.
Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology