Mohammad Maqusood Alam, Sun Hak Lee, Sobia Wasim, Sang-Yoon Lee
{"title":"显像α-突触核蛋白病的PET示踪剂开发","authors":"Mohammad Maqusood Alam, Sun Hak Lee, Sobia Wasim, Sang-Yoon Lee","doi":"10.1007/s12272-025-01538-0","DOIUrl":null,"url":null,"abstract":"<div><p>Abnormal α-synuclein aggregation is a key neuropathological hallmark of α-synucleinopathies, such as Parkinson’s disease (PD), multiple system atrophy (MSA), and several other neurological disorders, and closely contributes to pathogenesis. The primary characteristics of α-synucleinopathies are selective targeted neurodegeneration and the accumulation of Lewy pathologies. Specifically, α-synuclein positron emission tomography (PET) radiotracers target the fibrillar forms of the protein, thus enhancing early diagnosis and the evaluation of treatment effectiveness for various α-synucleinopathies. Therefore, in vivo detection of α-synuclein aggregates using targeted radiolabeled probes would aid in drug development, early diagnosis, and ongoing disease monitoring. As such, no promising α-synuclein biomarkers suitable for clinical applications have been reported. PET is a valuable non-invasive technique for imaging drug distribution in tissues and receptor occupancy at target sites in living animals and humans. Advances in PET biomarkers have significantly enhanced our understanding of the mechanisms underlying PD. This review summarizes recent ongoing efforts in the development of selective PET tracers for α-synuclein and discusses future perspectives.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"48 4","pages":"333 - 350"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PET tracer development for imaging α-synucleinopathies\",\"authors\":\"Mohammad Maqusood Alam, Sun Hak Lee, Sobia Wasim, Sang-Yoon Lee\",\"doi\":\"10.1007/s12272-025-01538-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Abnormal α-synuclein aggregation is a key neuropathological hallmark of α-synucleinopathies, such as Parkinson’s disease (PD), multiple system atrophy (MSA), and several other neurological disorders, and closely contributes to pathogenesis. The primary characteristics of α-synucleinopathies are selective targeted neurodegeneration and the accumulation of Lewy pathologies. Specifically, α-synuclein positron emission tomography (PET) radiotracers target the fibrillar forms of the protein, thus enhancing early diagnosis and the evaluation of treatment effectiveness for various α-synucleinopathies. Therefore, in vivo detection of α-synuclein aggregates using targeted radiolabeled probes would aid in drug development, early diagnosis, and ongoing disease monitoring. As such, no promising α-synuclein biomarkers suitable for clinical applications have been reported. PET is a valuable non-invasive technique for imaging drug distribution in tissues and receptor occupancy at target sites in living animals and humans. Advances in PET biomarkers have significantly enhanced our understanding of the mechanisms underlying PD. This review summarizes recent ongoing efforts in the development of selective PET tracers for α-synuclein and discusses future perspectives.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\"48 4\",\"pages\":\"333 - 350\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-025-01538-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-025-01538-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PET tracer development for imaging α-synucleinopathies
Abnormal α-synuclein aggregation is a key neuropathological hallmark of α-synucleinopathies, such as Parkinson’s disease (PD), multiple system atrophy (MSA), and several other neurological disorders, and closely contributes to pathogenesis. The primary characteristics of α-synucleinopathies are selective targeted neurodegeneration and the accumulation of Lewy pathologies. Specifically, α-synuclein positron emission tomography (PET) radiotracers target the fibrillar forms of the protein, thus enhancing early diagnosis and the evaluation of treatment effectiveness for various α-synucleinopathies. Therefore, in vivo detection of α-synuclein aggregates using targeted radiolabeled probes would aid in drug development, early diagnosis, and ongoing disease monitoring. As such, no promising α-synuclein biomarkers suitable for clinical applications have been reported. PET is a valuable non-invasive technique for imaging drug distribution in tissues and receptor occupancy at target sites in living animals and humans. Advances in PET biomarkers have significantly enhanced our understanding of the mechanisms underlying PD. This review summarizes recent ongoing efforts in the development of selective PET tracers for α-synuclein and discusses future perspectives.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.