Taeheon Kim;Sangyun Chung;Damin Yeom;Youngjoon Yu;Hak Gu Kim;Yong Man Ro
{"title":"MSCoTDet:语言驱动的多模态融合改进的多光谱行人检测","authors":"Taeheon Kim;Sangyun Chung;Damin Yeom;Youngjoon Yu;Hak Gu Kim;Yong Man Ro","doi":"10.1109/TCSVT.2024.3524645","DOIUrl":null,"url":null,"abstract":"Multispectral pedestrian detection is attractive for around-the-clock applications due to the complementary information between RGB and thermal modalities. However, current models often fail to detect pedestrians in certain cases (e.g., thermal-obscured pedestrians), particularly due to the modality bias learned from statistically biased datasets. In this paper, we investigate how to mitigate modality bias in multispectral pedestrian detection using a Large Language Model (LLM). Accordingly, we design a Multispectral Chain-of-Thought (MSCoT) prompting strategy, which prompts the LLM to perform multispectral pedestrian detection. Moreover, we propose a novel Multispectral Chain-of-Thought Detection (MSCoTDet) framework that integrates MSCoT prompting into multispectral pedestrian detection. To this end, we design a Language-driven Multi-modal Fusion (LMF) strategy that enables fusing the outputs of MSCoT prompting with the detection results of vision-based multispectral pedestrian detection models. Extensive experiments validate that MSCoTDet effectively mitigates modality biases and improves multispectral pedestrian detection.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 5","pages":"5006-5021"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSCoTDet: Language-Driven Multi-Modal Fusion for Improved Multispectral Pedestrian Detection\",\"authors\":\"Taeheon Kim;Sangyun Chung;Damin Yeom;Youngjoon Yu;Hak Gu Kim;Yong Man Ro\",\"doi\":\"10.1109/TCSVT.2024.3524645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multispectral pedestrian detection is attractive for around-the-clock applications due to the complementary information between RGB and thermal modalities. However, current models often fail to detect pedestrians in certain cases (e.g., thermal-obscured pedestrians), particularly due to the modality bias learned from statistically biased datasets. In this paper, we investigate how to mitigate modality bias in multispectral pedestrian detection using a Large Language Model (LLM). Accordingly, we design a Multispectral Chain-of-Thought (MSCoT) prompting strategy, which prompts the LLM to perform multispectral pedestrian detection. Moreover, we propose a novel Multispectral Chain-of-Thought Detection (MSCoTDet) framework that integrates MSCoT prompting into multispectral pedestrian detection. To this end, we design a Language-driven Multi-modal Fusion (LMF) strategy that enables fusing the outputs of MSCoT prompting with the detection results of vision-based multispectral pedestrian detection models. Extensive experiments validate that MSCoTDet effectively mitigates modality biases and improves multispectral pedestrian detection.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 5\",\"pages\":\"5006-5021\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819422/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819422/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
MSCoTDet: Language-Driven Multi-Modal Fusion for Improved Multispectral Pedestrian Detection
Multispectral pedestrian detection is attractive for around-the-clock applications due to the complementary information between RGB and thermal modalities. However, current models often fail to detect pedestrians in certain cases (e.g., thermal-obscured pedestrians), particularly due to the modality bias learned from statistically biased datasets. In this paper, we investigate how to mitigate modality bias in multispectral pedestrian detection using a Large Language Model (LLM). Accordingly, we design a Multispectral Chain-of-Thought (MSCoT) prompting strategy, which prompts the LLM to perform multispectral pedestrian detection. Moreover, we propose a novel Multispectral Chain-of-Thought Detection (MSCoTDet) framework that integrates MSCoT prompting into multispectral pedestrian detection. To this end, we design a Language-driven Multi-modal Fusion (LMF) strategy that enables fusing the outputs of MSCoT prompting with the detection results of vision-based multispectral pedestrian detection models. Extensive experiments validate that MSCoTDet effectively mitigates modality biases and improves multispectral pedestrian detection.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.