Anwei Luo;Rizhao Cai;Chenqi Kong;Yakun Ju;Xiangui Kang;Jiwu Huang;Alex C. Kot
{"title":"基于视觉变换的伪造感知自适应学习广义人脸伪造检测","authors":"Anwei Luo;Rizhao Cai;Chenqi Kong;Yakun Ju;Xiangui Kang;Jiwu Huang;Alex C. Kot","doi":"10.1109/TCSVT.2024.3522091","DOIUrl":null,"url":null,"abstract":"With the rapid progress of generative models, the current challenge in face forgery detection is how to effectively detect realistic manipulated faces from different unseen domains. Though previous studies show that pre-trained Vision Transformer (ViT) based models can achieve some promising results after fully fine-tuning on the Deepfake dataset, their generalization performances are still unsatisfactory. To this end, we present a Forgery-aware Adaptive Vision Transformer (FA-ViT) under the adaptive learning paradigm for generalized face forgery detection, where the parameters in the pre-trained ViT are kept fixed while the designed adaptive modules are optimized to capture forgery features. Specifically, a global adaptive module is designed to model long-range interactions among input tokens, which takes advantage of self-attention mechanism to mine global forgery clues. To further explore essential local forgery clues, a local adaptive module is proposed to expose local inconsistencies by enhancing the local contextual association. In addition, we introduce a fine-grained adaptive learning module that emphasizes the common compact representation of genuine faces through relationship learning in fine-grained pairs, driving these proposed adaptive modules to be aware of fine-grained forgery-aware information. Extensive experiments demonstrate that our FA-ViT achieves state-of-the-arts results in the cross-dataset evaluation, and enhances the robustness against unseen perturbations. Particularly, FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation. The code and trained model have been released at: <uri>https://github.com/LoveSiameseCat/FAViT</uri>.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 5","pages":"4116-4129"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forgery-Aware Adaptive Learning With Vision Transformer for Generalized Face Forgery Detection\",\"authors\":\"Anwei Luo;Rizhao Cai;Chenqi Kong;Yakun Ju;Xiangui Kang;Jiwu Huang;Alex C. Kot\",\"doi\":\"10.1109/TCSVT.2024.3522091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid progress of generative models, the current challenge in face forgery detection is how to effectively detect realistic manipulated faces from different unseen domains. Though previous studies show that pre-trained Vision Transformer (ViT) based models can achieve some promising results after fully fine-tuning on the Deepfake dataset, their generalization performances are still unsatisfactory. To this end, we present a Forgery-aware Adaptive Vision Transformer (FA-ViT) under the adaptive learning paradigm for generalized face forgery detection, where the parameters in the pre-trained ViT are kept fixed while the designed adaptive modules are optimized to capture forgery features. Specifically, a global adaptive module is designed to model long-range interactions among input tokens, which takes advantage of self-attention mechanism to mine global forgery clues. To further explore essential local forgery clues, a local adaptive module is proposed to expose local inconsistencies by enhancing the local contextual association. In addition, we introduce a fine-grained adaptive learning module that emphasizes the common compact representation of genuine faces through relationship learning in fine-grained pairs, driving these proposed adaptive modules to be aware of fine-grained forgery-aware information. Extensive experiments demonstrate that our FA-ViT achieves state-of-the-arts results in the cross-dataset evaluation, and enhances the robustness against unseen perturbations. Particularly, FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation. The code and trained model have been released at: <uri>https://github.com/LoveSiameseCat/FAViT</uri>.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"35 5\",\"pages\":\"4116-4129\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813581/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10813581/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Forgery-Aware Adaptive Learning With Vision Transformer for Generalized Face Forgery Detection
With the rapid progress of generative models, the current challenge in face forgery detection is how to effectively detect realistic manipulated faces from different unseen domains. Though previous studies show that pre-trained Vision Transformer (ViT) based models can achieve some promising results after fully fine-tuning on the Deepfake dataset, their generalization performances are still unsatisfactory. To this end, we present a Forgery-aware Adaptive Vision Transformer (FA-ViT) under the adaptive learning paradigm for generalized face forgery detection, where the parameters in the pre-trained ViT are kept fixed while the designed adaptive modules are optimized to capture forgery features. Specifically, a global adaptive module is designed to model long-range interactions among input tokens, which takes advantage of self-attention mechanism to mine global forgery clues. To further explore essential local forgery clues, a local adaptive module is proposed to expose local inconsistencies by enhancing the local contextual association. In addition, we introduce a fine-grained adaptive learning module that emphasizes the common compact representation of genuine faces through relationship learning in fine-grained pairs, driving these proposed adaptive modules to be aware of fine-grained forgery-aware information. Extensive experiments demonstrate that our FA-ViT achieves state-of-the-arts results in the cross-dataset evaluation, and enhances the robustness against unseen perturbations. Particularly, FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation. The code and trained model have been released at: https://github.com/LoveSiameseCat/FAViT.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.