Adrián Ghajari , Alejandro Benito-Santos , Salvador Ros , Víctor Fresno , Elena González-Blanco
{"title":"基于测试驱动信息论的组合分布语义:以西班牙语歌词为例","authors":"Adrián Ghajari , Alejandro Benito-Santos , Salvador Ros , Víctor Fresno , Elena González-Blanco","doi":"10.1016/j.knosys.2025.113549","DOIUrl":null,"url":null,"abstract":"<div><div>Song lyrics pose unique challenges for semantic similarity assessment due to their metaphorical language, structural patterns, and cultural nuances - characteristics that often challenge standard natural language processing (NLP) approaches. These challenges stem from a tension between compositional and distributional semantics: while lyrics follow compositional structures, their meaning depends heavily on context and interpretation. The Information Theory-based Compositional Distributional Semantics framework offers a principled approach by integrating information theory with compositional rules and distributional representations. We evaluate eight embedding models on Spanish song lyrics, including multilingual, monolingual contextual, and static embeddings. Results show that multilingual models consistently outperform monolingual alternatives, with the domain-adapted ALBERTI achieving the highest F1 macro scores (78.92 ± 10.86). Our analysis reveals that monolingual models generate highly anisotropic embedding spaces, significantly impacting performance with traditional metrics. The Information Contrast Model metric proves particularly effective, providing improvements up to 18.04 percentage points over cosine similarity. Additionally, composition functions maintaining longer accumulated vector norms consistently outperform standard averaging approaches. Our findings have important implications for NLP applications and challenge standard practices in similarity calculation, showing that effectiveness varies with both task nature and model characteristics.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"319 ","pages":"Article 113549"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test-driving information theory-based compositional distributional semantics: A case study on Spanish song lyrics\",\"authors\":\"Adrián Ghajari , Alejandro Benito-Santos , Salvador Ros , Víctor Fresno , Elena González-Blanco\",\"doi\":\"10.1016/j.knosys.2025.113549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Song lyrics pose unique challenges for semantic similarity assessment due to their metaphorical language, structural patterns, and cultural nuances - characteristics that often challenge standard natural language processing (NLP) approaches. These challenges stem from a tension between compositional and distributional semantics: while lyrics follow compositional structures, their meaning depends heavily on context and interpretation. The Information Theory-based Compositional Distributional Semantics framework offers a principled approach by integrating information theory with compositional rules and distributional representations. We evaluate eight embedding models on Spanish song lyrics, including multilingual, monolingual contextual, and static embeddings. Results show that multilingual models consistently outperform monolingual alternatives, with the domain-adapted ALBERTI achieving the highest F1 macro scores (78.92 ± 10.86). Our analysis reveals that monolingual models generate highly anisotropic embedding spaces, significantly impacting performance with traditional metrics. The Information Contrast Model metric proves particularly effective, providing improvements up to 18.04 percentage points over cosine similarity. Additionally, composition functions maintaining longer accumulated vector norms consistently outperform standard averaging approaches. Our findings have important implications for NLP applications and challenge standard practices in similarity calculation, showing that effectiveness varies with both task nature and model characteristics.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"319 \",\"pages\":\"Article 113549\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125005957\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125005957","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Test-driving information theory-based compositional distributional semantics: A case study on Spanish song lyrics
Song lyrics pose unique challenges for semantic similarity assessment due to their metaphorical language, structural patterns, and cultural nuances - characteristics that often challenge standard natural language processing (NLP) approaches. These challenges stem from a tension between compositional and distributional semantics: while lyrics follow compositional structures, their meaning depends heavily on context and interpretation. The Information Theory-based Compositional Distributional Semantics framework offers a principled approach by integrating information theory with compositional rules and distributional representations. We evaluate eight embedding models on Spanish song lyrics, including multilingual, monolingual contextual, and static embeddings. Results show that multilingual models consistently outperform monolingual alternatives, with the domain-adapted ALBERTI achieving the highest F1 macro scores (78.92 ± 10.86). Our analysis reveals that monolingual models generate highly anisotropic embedding spaces, significantly impacting performance with traditional metrics. The Information Contrast Model metric proves particularly effective, providing improvements up to 18.04 percentage points over cosine similarity. Additionally, composition functions maintaining longer accumulated vector norms consistently outperform standard averaging approaches. Our findings have important implications for NLP applications and challenge standard practices in similarity calculation, showing that effectiveness varies with both task nature and model characteristics.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.