具有保持动能和压力平衡格式的实际流体的Navier-Stokes特征边界条件

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhen Li , Ahmed Abdellatif , Rui Yang , Lluís Jofre , Francesco Capuano
{"title":"具有保持动能和压力平衡格式的实际流体的Navier-Stokes特征边界条件","authors":"Zhen Li ,&nbsp;Ahmed Abdellatif ,&nbsp;Rui Yang ,&nbsp;Lluís Jofre ,&nbsp;Francesco Capuano","doi":"10.1016/j.jcp.2025.114035","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents Navier–Stokes characteristic boundary conditions (NSCBC) for real fluids in conjunction with kinetic-energy-preserving (KEP) and pressure-equilibrium-preserving (PEP) numerical schemes. The appropriate wave relations are derived for an arbitrary equation of state according to either the locally one-dimensional inviscid (LODI) approximation or its three-dimensional extension. The NSCBC workflow is adapted to the PEP framework, which in this work is based on evolving pressure instead of total energy. A set of canonical tests of increasing complexity demonstrates that the combination of KEP+PEP schemes and 3D-NSCBC is a viable approach to obtain stable numerical results that are free of spurious oscillations/reflections, in the absence of any artificial stabilization mechanism.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"535 ","pages":"Article 114035"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navier–Stokes characteristic boundary conditions for real fluids with kinetic-energy- and pressure-equilibrium-preserving schemes\",\"authors\":\"Zhen Li ,&nbsp;Ahmed Abdellatif ,&nbsp;Rui Yang ,&nbsp;Lluís Jofre ,&nbsp;Francesco Capuano\",\"doi\":\"10.1016/j.jcp.2025.114035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents Navier–Stokes characteristic boundary conditions (NSCBC) for real fluids in conjunction with kinetic-energy-preserving (KEP) and pressure-equilibrium-preserving (PEP) numerical schemes. The appropriate wave relations are derived for an arbitrary equation of state according to either the locally one-dimensional inviscid (LODI) approximation or its three-dimensional extension. The NSCBC workflow is adapted to the PEP framework, which in this work is based on evolving pressure instead of total energy. A set of canonical tests of increasing complexity demonstrates that the combination of KEP+PEP schemes and 3D-NSCBC is a viable approach to obtain stable numerical results that are free of spurious oscillations/reflections, in the absence of any artificial stabilization mechanism.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"535 \",\"pages\":\"Article 114035\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003183\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003183","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文结合保动能(KEP)和保压力平衡(PEP)数值格式,提出了实际流体的Navier-Stokes特征边界条件(NSCBC)。根据局部一维无粘(LODI)近似或其三维扩展,导出了任意状态方程的适当波动关系。NSCBC工作流适应PEP框架,该框架在本工作中基于不断变化的压力而不是总能量。一组越来越复杂的规范测试表明,KEP+PEP方案和3D-NSCBC的组合是在没有任何人工稳定机制的情况下获得稳定的数值结果的可行方法,该结果没有虚假振荡/反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navier–Stokes characteristic boundary conditions for real fluids with kinetic-energy- and pressure-equilibrium-preserving schemes
This study presents Navier–Stokes characteristic boundary conditions (NSCBC) for real fluids in conjunction with kinetic-energy-preserving (KEP) and pressure-equilibrium-preserving (PEP) numerical schemes. The appropriate wave relations are derived for an arbitrary equation of state according to either the locally one-dimensional inviscid (LODI) approximation or its three-dimensional extension. The NSCBC workflow is adapted to the PEP framework, which in this work is based on evolving pressure instead of total energy. A set of canonical tests of increasing complexity demonstrates that the combination of KEP+PEP schemes and 3D-NSCBC is a viable approach to obtain stable numerical results that are free of spurious oscillations/reflections, in the absence of any artificial stabilization mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信