一个人工智能解决方案,用于检测和分类YouTube视频中的赞助广告段

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Johnny Chan, Brice Valentin Kok-Shun
{"title":"一个人工智能解决方案,用于检测和分类YouTube视频中的赞助广告段","authors":"Johnny Chan,&nbsp;Brice Valentin Kok-Shun","doi":"10.1016/j.simpa.2025.100759","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an AI-powered software solution for detecting and categorising sponsored advertisement segments in YouTube videos. By combining GPT-4 for ad identification, KeyBERT for keyword extraction, and custom prompts for grouping keywords into concise categories, the software provides a scalable and efficient alternative to traditional ad detection methods. It processes both auto-generated and manual transcripts, ensuring adaptability across varied contexts. The tool enables a deeper understanding of advertising strategies and ad-content alignment while maintaining ease of use and reproducibility. This work highlights the potential of AI in transforming digital advertisement analysis.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"24 ","pages":"Article 100759"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-powered solution for detecting and categorising sponsored ad segments in YouTube videos\",\"authors\":\"Johnny Chan,&nbsp;Brice Valentin Kok-Shun\",\"doi\":\"10.1016/j.simpa.2025.100759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an AI-powered software solution for detecting and categorising sponsored advertisement segments in YouTube videos. By combining GPT-4 for ad identification, KeyBERT for keyword extraction, and custom prompts for grouping keywords into concise categories, the software provides a scalable and efficient alternative to traditional ad detection methods. It processes both auto-generated and manual transcripts, ensuring adaptability across varied contexts. The tool enables a deeper understanding of advertising strategies and ad-content alignment while maintaining ease of use and reproducibility. This work highlights the potential of AI in transforming digital advertisement analysis.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"24 \",\"pages\":\"Article 100759\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种人工智能驱动的软件解决方案,用于检测和分类YouTube视频中的赞助广告片段。通过将GPT-4用于广告识别,KeyBERT用于关键字提取,以及将关键字分组为简明类别的自定义提示相结合,该软件提供了传统广告检测方法的可扩展且高效的替代方案。它可以处理自动生成的和手动生成的转录本,确保跨不同上下文的适应性。该工具可以更深入地了解广告策略和广告内容对齐,同时保持易用性和可再现性。这项工作强调了人工智能在改变数字广告分析方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An AI-powered solution for detecting and categorising sponsored ad segments in YouTube videos

An AI-powered solution for detecting and categorising sponsored ad segments in YouTube videos
This paper presents an AI-powered software solution for detecting and categorising sponsored advertisement segments in YouTube videos. By combining GPT-4 for ad identification, KeyBERT for keyword extraction, and custom prompts for grouping keywords into concise categories, the software provides a scalable and efficient alternative to traditional ad detection methods. It processes both auto-generated and manual transcripts, ensuring adaptability across varied contexts. The tool enables a deeper understanding of advertising strategies and ad-content alignment while maintaining ease of use and reproducibility. This work highlights the potential of AI in transforming digital advertisement analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信