Yong Peng , Dai-yi Jiang , Shun-yu Yao , Xiuli Zhang , Sugimoto Kazuo , Jia Liu , Miao-qiao Du , Lan-xin Lin , Quan Chen , Hong Jin
{"title":"帕金森病基因修饰动物模型","authors":"Yong Peng , Dai-yi Jiang , Shun-yu Yao , Xiuli Zhang , Sugimoto Kazuo , Jia Liu , Miao-qiao Du , Lan-xin Lin , Quan Chen , Hong Jin","doi":"10.1016/j.expneurol.2025.115287","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is a neurodegenerative disorder that commonly occurs in older individuals and clinically manifests as resting tremors, bradykinesia, muscle stiffness, and impaired postural balance. From a genetic perspective, animal models using gene-editing technologies offer distinct advantages in replicating the pathophysiological traits of PD, while also functionally exploring potential treatment targets. In this review, we highlight the available gene- modified animal models related to various mechanisms of PD, including abnormal expression of alpha-synuclein protein, dysfunction of the autophagy-lysosome system, abnormalities in the ubiquitin-proteasome system, and mitochondrial dysfunction. We further discuss their respective strengths, limitations, and prospects, aiming to provide the most up to date information for the application of PD animal models and the advancement of anti-PD drugs.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"390 ","pages":"Article 115287"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene-modified animal models of Parkinson's disease\",\"authors\":\"Yong Peng , Dai-yi Jiang , Shun-yu Yao , Xiuli Zhang , Sugimoto Kazuo , Jia Liu , Miao-qiao Du , Lan-xin Lin , Quan Chen , Hong Jin\",\"doi\":\"10.1016/j.expneurol.2025.115287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Parkinson's disease (PD) is a neurodegenerative disorder that commonly occurs in older individuals and clinically manifests as resting tremors, bradykinesia, muscle stiffness, and impaired postural balance. From a genetic perspective, animal models using gene-editing technologies offer distinct advantages in replicating the pathophysiological traits of PD, while also functionally exploring potential treatment targets. In this review, we highlight the available gene- modified animal models related to various mechanisms of PD, including abnormal expression of alpha-synuclein protein, dysfunction of the autophagy-lysosome system, abnormalities in the ubiquitin-proteasome system, and mitochondrial dysfunction. We further discuss their respective strengths, limitations, and prospects, aiming to provide the most up to date information for the application of PD animal models and the advancement of anti-PD drugs.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"390 \",\"pages\":\"Article 115287\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625001517\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625001517","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Gene-modified animal models of Parkinson's disease
Parkinson's disease (PD) is a neurodegenerative disorder that commonly occurs in older individuals and clinically manifests as resting tremors, bradykinesia, muscle stiffness, and impaired postural balance. From a genetic perspective, animal models using gene-editing technologies offer distinct advantages in replicating the pathophysiological traits of PD, while also functionally exploring potential treatment targets. In this review, we highlight the available gene- modified animal models related to various mechanisms of PD, including abnormal expression of alpha-synuclein protein, dysfunction of the autophagy-lysosome system, abnormalities in the ubiquitin-proteasome system, and mitochondrial dysfunction. We further discuss their respective strengths, limitations, and prospects, aiming to provide the most up to date information for the application of PD animal models and the advancement of anti-PD drugs.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.