{"title":"组蛋白伴侣在复制偶联染色质组装中的结构和功能","authors":"Chao-Pei Liu , Rui-Ming Xu","doi":"10.1016/j.sbi.2025.103059","DOIUrl":null,"url":null,"abstract":"<div><div>Eukaryotic cell divisions pass on genetic and epigenetic information from parental to daughter cells through replication of the chromatin, which needs to be reestablished following DNA replication, as its building block, the nucleosome, is disrupted by the passage of the DNA replication fork. This replication-coupled (RC) nucleosome assembly process takes place in distinct pathways depending on whether newly synthesized or parental histones are used. This review highlights recent progress in structural and biochemical studies of RC nucleosome assembly, focusing on the roles of histone chaperones in both <em>de novo</em> assembly of nucleosomes from newly synthesized histones and the recycling of parental histones. We also discuss the interactions between histone chaperones and replisome components that govern the coupling of nucleosome assembly to chromatin replication. Finally, we offer our perspective on future efforts in advancing this important research direction.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103059"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and function of histone chaperones in replication-coupled chromatin assembly\",\"authors\":\"Chao-Pei Liu , Rui-Ming Xu\",\"doi\":\"10.1016/j.sbi.2025.103059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Eukaryotic cell divisions pass on genetic and epigenetic information from parental to daughter cells through replication of the chromatin, which needs to be reestablished following DNA replication, as its building block, the nucleosome, is disrupted by the passage of the DNA replication fork. This replication-coupled (RC) nucleosome assembly process takes place in distinct pathways depending on whether newly synthesized or parental histones are used. This review highlights recent progress in structural and biochemical studies of RC nucleosome assembly, focusing on the roles of histone chaperones in both <em>de novo</em> assembly of nucleosomes from newly synthesized histones and the recycling of parental histones. We also discuss the interactions between histone chaperones and replisome components that govern the coupling of nucleosome assembly to chromatin replication. Finally, we offer our perspective on future efforts in advancing this important research direction.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"92 \",\"pages\":\"Article 103059\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000776\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000776","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure and function of histone chaperones in replication-coupled chromatin assembly
Eukaryotic cell divisions pass on genetic and epigenetic information from parental to daughter cells through replication of the chromatin, which needs to be reestablished following DNA replication, as its building block, the nucleosome, is disrupted by the passage of the DNA replication fork. This replication-coupled (RC) nucleosome assembly process takes place in distinct pathways depending on whether newly synthesized or parental histones are used. This review highlights recent progress in structural and biochemical studies of RC nucleosome assembly, focusing on the roles of histone chaperones in both de novo assembly of nucleosomes from newly synthesized histones and the recycling of parental histones. We also discuss the interactions between histone chaperones and replisome components that govern the coupling of nucleosome assembly to chromatin replication. Finally, we offer our perspective on future efforts in advancing this important research direction.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation