{"title":"求解广义特征值反问题的两步非精确类牛顿法","authors":"Liuqing Hua , Wei Ma","doi":"10.1016/j.rinam.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, based on two-step Newton iterative procedure, we propose a two-step inexact Newton-like method for generalized inverse eigenvalue problems. Under some mild assumptions, our results show that the two-step inexact Newton-like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of the new method.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100579"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-step inexact Newton-like method for solving generalized inverse eigenvalue problems\",\"authors\":\"Liuqing Hua , Wei Ma\",\"doi\":\"10.1016/j.rinam.2025.100579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, based on two-step Newton iterative procedure, we propose a two-step inexact Newton-like method for generalized inverse eigenvalue problems. Under some mild assumptions, our results show that the two-step inexact Newton-like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of the new method.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100579\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two-step inexact Newton-like method for solving generalized inverse eigenvalue problems
In this paper, based on two-step Newton iterative procedure, we propose a two-step inexact Newton-like method for generalized inverse eigenvalue problems. Under some mild assumptions, our results show that the two-step inexact Newton-like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of the new method.