使用多模态大型语言模型从图图像生成统一的建模语言代码

IF 4.9
Averi Bates , Ryan Vavricka , Shane Carleton , Ruosi Shao , Chongle Pan
{"title":"使用多模态大型语言模型从图图像生成统一的建模语言代码","authors":"Averi Bates ,&nbsp;Ryan Vavricka ,&nbsp;Shane Carleton ,&nbsp;Ruosi Shao ,&nbsp;Chongle Pan","doi":"10.1016/j.mlwa.2025.100660","DOIUrl":null,"url":null,"abstract":"<div><div>The Unified Modeling Language is a standardized visual language widely used for modeling and documenting the design of software systems. Although many tools are available that generate UML diagrams from UML code, generating executable UML code from image-based UML diagrams remains challenging. This paper proposes a new approach to generate UML code using a large multimodal language model automatically. Synthetic UML activity and sequence diagram datasets were created to train and test the model. We compared the standard fine-tuning with LoRA techniques to optimize base models. The experiments measured the code generation accuracy across different model sizes and training strategies. These results demonstrated that domain-adapted MM-LLMs perform for UML code generation automation, whereby, at the best model, it achieved BLEU and SSIM of 0.779 and 0.942 on sequence diagrams. This will enable the modernization of legacy systems and decrease the manual effort put into software development workflows.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100660"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified modeling language code generation from diagram images using multimodal large language models\",\"authors\":\"Averi Bates ,&nbsp;Ryan Vavricka ,&nbsp;Shane Carleton ,&nbsp;Ruosi Shao ,&nbsp;Chongle Pan\",\"doi\":\"10.1016/j.mlwa.2025.100660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Unified Modeling Language is a standardized visual language widely used for modeling and documenting the design of software systems. Although many tools are available that generate UML diagrams from UML code, generating executable UML code from image-based UML diagrams remains challenging. This paper proposes a new approach to generate UML code using a large multimodal language model automatically. Synthetic UML activity and sequence diagram datasets were created to train and test the model. We compared the standard fine-tuning with LoRA techniques to optimize base models. The experiments measured the code generation accuracy across different model sizes and training strategies. These results demonstrated that domain-adapted MM-LLMs perform for UML code generation automation, whereby, at the best model, it achieved BLEU and SSIM of 0.779 and 0.942 on sequence diagrams. This will enable the modernization of legacy systems and decrease the manual effort put into software development workflows.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"20 \",\"pages\":\"Article 100660\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266682702500043X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682702500043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统一建模语言是一种标准化的可视化语言,广泛用于软件系统设计的建模和记录。尽管有许多工具可以从UML代码生成UML图,但是从基于图像的UML图生成可执行的UML代码仍然具有挑战性。本文提出了一种利用大型多模态语言模型自动生成UML代码的新方法。创建了综合UML活动和序列图数据集来训练和测试模型。我们比较了标准微调和LoRA技术来优化基本模型。实验测量了不同模型大小和训练策略下代码生成的准确性。这些结果表明,领域适应的mm - llm执行UML代码生成自动化,因此,在最好的模型下,它在序列图上实现了0.779和0.942的BLEU和SSIM。这将使遗留系统现代化,并减少投入到软件开发工作流中的手工工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified modeling language code generation from diagram images using multimodal large language models
The Unified Modeling Language is a standardized visual language widely used for modeling and documenting the design of software systems. Although many tools are available that generate UML diagrams from UML code, generating executable UML code from image-based UML diagrams remains challenging. This paper proposes a new approach to generate UML code using a large multimodal language model automatically. Synthetic UML activity and sequence diagram datasets were created to train and test the model. We compared the standard fine-tuning with LoRA techniques to optimize base models. The experiments measured the code generation accuracy across different model sizes and training strategies. These results demonstrated that domain-adapted MM-LLMs perform for UML code generation automation, whereby, at the best model, it achieved BLEU and SSIM of 0.779 and 0.942 on sequence diagrams. This will enable the modernization of legacy systems and decrease the manual effort put into software development workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信