醇酮氢化学热泵的设计与优化

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rajalakshmi Krishnadoss, Idun Aalstad Dyrland, Thomas A. Adams II
{"title":"醇酮氢化学热泵的设计与优化","authors":"Rajalakshmi Krishnadoss,&nbsp;Idun Aalstad Dyrland,&nbsp;Thomas A. Adams II","doi":"10.1016/j.compchemeng.2025.109158","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of the Alcohol–Ketone–Hydrogen working fluid system for chemical heat pumps was studied using steady state simulation, focusing on three systems: isopropanol–acetone–hydrogen, 2-butanol–methyl ethyl ketone–hydrogen and 2-Pentanol–methyl propyl ketone–hydrogen. Performance parameters such as Coefficient of Performance based on heat quantity (<span><math><mrow><mi>C</mi><mi>O</mi><mi>P</mi></mrow></math></span>), Coefficient of Performance based on electric work input (<span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span>), and Exergy efficiency (<span><math><msub><mi>η</mi><mn>25</mn></msub></math></span>, <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span>) at reference temperatures 25 °C and 78 °C were calculated for different endothermic temperatures (∼130 °C to 200 °C) at temperature lift of 25 °C, 50 °C, 75 °C and 100 °C. For each operating scenario (e.g. the combination of the temperature of available waste heat and the desired temperature lift), the optimal design parameters such as feed tray locations, purity of distillate and bottom streams, and the ratio of hydrogen and Ketone at the exothermic reactor inlet were found through optimization techniques. Overall, the isopropanol–acetone–hydrogen working fluid system offers better performance in terms of <span><math><mrow><mi>C</mi><mi>O</mi><mi>P</mi></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span>, <span><math><msub><mi>η</mi><mn>25</mn></msub></math></span> and <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span> compared to the other considered chemical systems for most of the temperature range. In the best use cases, <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span> reached as high as 70 % and <span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span> reached as high as 15.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109158"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of alcohol-ketone-hydrogen chemical heat pumps\",\"authors\":\"Rajalakshmi Krishnadoss,&nbsp;Idun Aalstad Dyrland,&nbsp;Thomas A. Adams II\",\"doi\":\"10.1016/j.compchemeng.2025.109158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of the Alcohol–Ketone–Hydrogen working fluid system for chemical heat pumps was studied using steady state simulation, focusing on three systems: isopropanol–acetone–hydrogen, 2-butanol–methyl ethyl ketone–hydrogen and 2-Pentanol–methyl propyl ketone–hydrogen. Performance parameters such as Coefficient of Performance based on heat quantity (<span><math><mrow><mi>C</mi><mi>O</mi><mi>P</mi></mrow></math></span>), Coefficient of Performance based on electric work input (<span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span>), and Exergy efficiency (<span><math><msub><mi>η</mi><mn>25</mn></msub></math></span>, <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span>) at reference temperatures 25 °C and 78 °C were calculated for different endothermic temperatures (∼130 °C to 200 °C) at temperature lift of 25 °C, 50 °C, 75 °C and 100 °C. For each operating scenario (e.g. the combination of the temperature of available waste heat and the desired temperature lift), the optimal design parameters such as feed tray locations, purity of distillate and bottom streams, and the ratio of hydrogen and Ketone at the exothermic reactor inlet were found through optimization techniques. Overall, the isopropanol–acetone–hydrogen working fluid system offers better performance in terms of <span><math><mrow><mi>C</mi><mi>O</mi><mi>P</mi></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span>, <span><math><msub><mi>η</mi><mn>25</mn></msub></math></span> and <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span> compared to the other considered chemical systems for most of the temperature range. In the best use cases, <span><math><msub><mi>η</mi><mn>78</mn></msub></math></span> reached as high as 70 % and <span><math><mrow><mi>C</mi><mi>O</mi><msub><mi>P</mi><mi>W</mi></msub></mrow></math></span> reached as high as 15.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"199 \",\"pages\":\"Article 109158\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001620\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001620","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

以异丙醇-丙酮-氢、2-丁醇-甲基乙基酮-氢和2-戊醇-甲基丙基酮-氢三种体系为研究对象,采用稳态模拟方法研究了化工热泵用醇-酮-氢工作流体系统的性能。在25°C、50°C、75°C和100°C的不同吸热温度(~ 130°C至200°C)下,计算了参考温度25°C和78°C下基于热量的性能系数(COP)、基于电功输入的性能系数(COPW)和火用效率(η25、η78)等性能参数。对于每个操作场景(例如可用废热温度和期望温度升程的组合),通过优化技术找到了最佳设计参数,如进料塔位置、馏分和底流纯度以及放热反应器入口氢和酮的比例。总体而言,在大多数温度范围内,与其他化学体系相比,异丙醇-丙酮-氢工质体系在COP、COPW、η25和η78方面具有更好的性能。在最佳用例中,η78高达70%,COPW高达15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and optimization of alcohol-ketone-hydrogen chemical heat pumps

Design and optimization of alcohol-ketone-hydrogen chemical heat pumps
The performance of the Alcohol–Ketone–Hydrogen working fluid system for chemical heat pumps was studied using steady state simulation, focusing on three systems: isopropanol–acetone–hydrogen, 2-butanol–methyl ethyl ketone–hydrogen and 2-Pentanol–methyl propyl ketone–hydrogen. Performance parameters such as Coefficient of Performance based on heat quantity (COP), Coefficient of Performance based on electric work input (COPW), and Exergy efficiency (η25, η78) at reference temperatures 25 °C and 78 °C were calculated for different endothermic temperatures (∼130 °C to 200 °C) at temperature lift of 25 °C, 50 °C, 75 °C and 100 °C. For each operating scenario (e.g. the combination of the temperature of available waste heat and the desired temperature lift), the optimal design parameters such as feed tray locations, purity of distillate and bottom streams, and the ratio of hydrogen and Ketone at the exothermic reactor inlet were found through optimization techniques. Overall, the isopropanol–acetone–hydrogen working fluid system offers better performance in terms of COP, COPW, η25 and η78 compared to the other considered chemical systems for most of the temperature range. In the best use cases, η78 reached as high as 70 % and COPW reached as high as 15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信