Judith P. Klinman*, Susan M. Miller and Nigel G. J. Richards,
{"title":"酶功能模型的基础转变","authors":"Judith P. Klinman*, Susan M. Miller and Nigel G. J. Richards, ","doi":"10.1021/jacs.5c0238810.1021/jacs.5c02388","DOIUrl":null,"url":null,"abstract":"<p >This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme–substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns–ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved <i>de novo</i> enzyme design.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 18","pages":"14884–14904 14884–14904"},"PeriodicalIF":15.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.5c02388","citationCount":"0","resultStr":"{\"title\":\"A Foundational Shift in Models for Enzyme Function\",\"authors\":\"Judith P. Klinman*, Susan M. Miller and Nigel G. J. Richards, \",\"doi\":\"10.1021/jacs.5c0238810.1021/jacs.5c02388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme–substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns–ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved <i>de novo</i> enzyme design.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 18\",\"pages\":\"14884–14904 14884–14904\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.5c02388\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c02388\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c02388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Foundational Shift in Models for Enzyme Function
This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme–substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns–ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved de novo enzyme design.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.